
Package: mcmcsae (via r-universe)
October 25, 2024

Version 0.7.7

License GPL-3

Title Markov Chain Monte Carlo Small Area Estimation

Type Package

LazyLoad yes

Encoding UTF-8

Description Fit multi-level models with possibly correlated random
effects using Markov Chain Monte Carlo simulation. Such models
allow smoothing over space and time and are useful in, for
example, small area estimation.

Date 2024-02-26

Depends R (>= 4.1.0)

Imports Matrix (>= 1.5.0), Rcpp (>= 0.11.0), methods, GIGrvg (>= 0.7),
loo (>= 2.0.0), matrixStats

Suggests dbarts, BayesLogit, lintools, splines, spdep, sf, bayesplot,
coda, posterior, parallel, testthat, roxygen2, knitr,
rmarkdown, survey

LinkingTo Rcpp, RcppEigen, Matrix, GIGrvg

VignetteBuilder knitr

RoxygenNote 7.3.1

Collate 'MCMCsim.R' 'MH.R' 'tabMatrix.R' 'MatrixUtils.R'
'RcppExports.R' 'TMVN_methods.R' 'TMVN_sampler.R'
'aux_closures.R' 'cMVN_sampler.R' 'cholesky.R'
'conjugate_gradients.R' 'family.R' 'formulas.R' 'kronprod.R'
'mc_bart.R' 'mc_block.R' 'mc_gen.R' 'mc_gl.R' 'mc_mec.R'
'mc_reg.R' 'mc_vfac.R' 'mc_vreg.R' 'mcmcsae.R' 'model_eval.R'
'modelmatrix.R' 'models.R' 'opts.R' 'parallel.R' 'plots.R'
'prediction.R' 'priors.R' 'random.R' 'samplers.R' 'sbc.R'
'sparse_template.R' 'utils.R'

NeedsCompilation yes

Author Harm Jan Boonstra [aut, cre], Grzegorz Baltissen [ctb]

1

2 Contents

Maintainer Harm Jan Boonstra <hjboonstra@gmail.com>

Date/Publication 2024-02-27 03:40:02 UTC

Repository https://hjboonstra.r-universe.dev

RemoteUrl https://github.com/cran/mcmcsae

RemoteRef HEAD

RemoteSha 748b910733eaf8d6df70819f030408a7275ba06e

Contents
mcmcsae-package . 3
acceptance_rates . 4
aggrMatrix . 4
brt . 5
CG_control . 7
chol_control . 8
combine_chains . 8
combine_iters . 9
computeDesignMatrix . 9
compute_GMRF_matrices . 10
correlation . 11
create_sampler . 14
create_TMVN_sampler . 17
gen . 20
generate_data . 24
gen_control . 26
get_draw . 26
glreg . 27
labels . 28
matrix-vector . 29
maximize_log_lh_p . 29
MCMC-diagnostics . 31
MCMC-object-conversion . 32
mcmcsae-family . 33
mcmcsae_example . 35
MCMCsim . 36
mec . 39
model-information-criteria . 41
model_matrix . 43
nchains-ndraws-nvars . 44
par_names . 45
plot.dc . 46
plot.mcdraws . 47
plot_coef . 47
posterior-moments . 49
predict.mcdraws . 50
print.dc_summary . 52

mcmcsae-package 3

print.mcdraws_summary . 53
pr_exp . 54
pr_fixed . 54
pr_gamma . 55
pr_gig . 55
pr_invchisq . 56
pr_invwishart . 57
pr_MLiG . 57
pr_normal . 58
read_draws . 59
reg . 60
residuals-fitted-values . 62
sampler_control . 64
SBC_test . 66
setup_cluster . 67
stop_cluster . 68
subset.dc . 68
summary.dc . 69
summary.mcdraws . 70
TMVN-methods . 71
transform_dc . 73
vfac . 74
vreg . 75
weights.mcdraws . 76

Index 78

mcmcsae-package Markov Chain Monte Carlo Small Area Estimation

Description

Fit multi-level models with possibly correlated random effects using MCMC.

Details

Functions to fit multi-level models with Gaussian, binomial, multinomial, negative binomial or
Poisson likelihoods using MCMC. Models with a linear predictor consisting of various possibly
correlated random effects are supported, allowing flexible modeling of temporal, spatial or other
kinds of dependence structures. For Gaussian models the variance can be modeled too. By mod-
eling variances at the unit level the marginal distribution can be changed to a Student-t or Laplace
distribution, which may account better for outliers. The package has been developed with appli-
cations to small area estimation in official statistics in mind. The posterior samples for the model
parameters can be passed to a prediction function to generate samples from the posterior predic-
tive distribution for user-defined quantities such as finite population domain means. For model
assessment, posterior predictive checks and DIC/WAIC criteria can easily be computed.

4 aggrMatrix

acceptance_rates Return Metropolis-Hastings acceptance rates

Description

Return Metropolis-Hastings acceptance rates

Usage

acceptance_rates(obj, aggregate.chains = FALSE)

Arguments

obj an mcdraws object, i.e. the output of function MCMCsim.
aggregate.chains

whether to return averages over chains or results per chain.

Value

A list of acceptance rates.

Examples

ex <- mcmcsae_example()
specify a model that requires MH sampling (in this case for a modeled
degrees of freedom parameter in the variance part of the model)
sampler <- create_sampler(ex$model, data=ex$dat, formula.V=~vfac(factor="fA",

prior=pr_invchisq(df="modeled")))
sim <- MCMCsim(sampler, burnin=100, n.iter=300, thin=2, n.chain=4, store.all=TRUE)
(summary(sim))
acceptance_rates(sim)

aggrMatrix Utility function to construct a sparse aggregation matrix from a factor

Description

Utility function to construct a sparse aggregation matrix from a factor

Usage

aggrMatrix(fac, w = 1, mean = FALSE, facnames = FALSE)

brt 5

Arguments

fac factor variable.

w vector of weights associated with the levels of fac.

mean if TRUE, aggregation will produce (weighted) means instead of sums.

facnames whether the factor levels should be used as column names for the aggregation
matrix.

Value

A sparse aggregation matrix of class tabMatrix.

Examples

n <- 1000
f <- sample(1:100, n, replace=TRUE)
x <- runif(n)
M <- aggrMatrix(f)
all.equal(crossprod_mv(M, x), as.vector(tapply(x, f, sum)))

brt Create a model component object for a BART (Bayesian Additive Re-
gression Trees) component in the linear predictor

Description

This function is intended to be used on the right hand side of the formula argument to create_sampler
or generate_data. It creates a BART term in the model’s linear predictor. To use this model com-
ponent one needs to have R package dbarts installed.

Usage

brt(
formula,
X = NULL,
n.trees = 75L,
name = "",
debug = FALSE,
keepTrees = FALSE,
...

)

6 brt

Arguments

formula a formula specifying the predictors to be used in the BART model component.
Variable names are looked up in the data frame passed as data argument to
create_sampler or generate_data, or in environment(formula).

X a design matrix can be specified directly, as an alternative to the creation of one
based on formula. If X is specified formula is ignored.

n.trees number of trees used in the BART ensemble.

name the name of the model component. This name is used in the output of the MCMC
simulation function MCMCsim. By default the name will be ’bart’ with the number
of the model term attached.

debug if TRUE a breakpoint is set at the beginning of the posterior draw function asso-
ciated with this model component. Mainly intended for developers.

keepTrees whether to store the trees ensemble for each Monte Carlo draw. This is required
for prediction based on new data. The default is FALSE to save memory.

... parameters passed to dbarts.

Value

An object with precomputed quantities and functions for sampling from prior or conditional poste-
rior distributions for this model component. Intended for internal use by other package functions.

References

H.A. Chipman, E.I. Georgea and R.E. McCulloch (2010). BART: Bayesian additive regression
trees. The Annals of Applied Statistics 4(1), 266-298.

J.H. Friedman (1991). Multivariate adaptive regression splines. The Annals of Statistics 19, 1-67.

Examples

generate data, based on an example in Friedman (1991)
gendat <- function(n=200L, p=10L, sigma=1) {

x <- matrix(runif(n * p), n, p)
mu <- 10*sin(pi*x[, 1] * x[, 2]) + 20*(x[, 3] - 0.5)^2 + 10*x[, 4] + 5*x[, 5]
y <- mu + sigma * rnorm(n)
data.frame(x=x, mu=mu, y=y)

}

train <- gendat()
test <- gendat(n=25)

keep trees for later prediction based on new data
sampler <- create_sampler(

y ~ brt(~ . - y, name="bart", keepTrees=TRUE),
sigma.mod=pr_invchisq(df=3, scale=var(train$y)),
data = train

)
sim <- MCMCsim(sampler, n.chain=2, n.iter=700, thin=2,

store.all=TRUE, verbose=FALSE)

CG_control 7

(summ <- summary(sim))
plot(train$mu, summ$bart[, "Mean"]); abline(0, 1)
NB prediction is currently slow

pred <- predict(sim, newdata=test,
iters=sample(seq_len(ndraws(sim)), 100),
show.progress=FALSE

)
(summpred <- summary(pred))
plot(test$mu, summpred[, "Mean"]); abline(0, 1)

CG_control Set options for the conjugate gradient (CG) sampler

Description

Set options for the conjugate gradient (CG) sampler

Usage

CG_control(
max.it = NULL,
stop.criterion = NULL,
preconditioner = c("GMRF", "GMRF2", "GMRF3", "identity"),
scale = 1,
chol.control = chol_control(),
verbose = FALSE

)

Arguments

max.it maximum number of CG iterations.

stop.criterion total squared error stop criterion for the CG algorithm.

preconditioner one of "GMRF", "GMRF2", "GMRF3" and "identity".

scale scale parameter; only used by the "GMRF3" preconditioner.

chol.control options for Cholesky decomposition, see chol_control.

verbose whether diagnostic information about the CG sampler is shown.

Value

A list of options used by the conjugate gradients algorithm.

8 combine_chains

chol_control Set options for Cholesky decomposition

Description

These options are only effective in case the matrix to be decomposed is sparse, i.p. of class
dsCMatrix-class.

Usage

chol_control(perm = NULL, super = NA, ordering = 0L, inplace = TRUE)

Arguments

perm logical scalar, see Cholesky. If NULL, the default, the choice is left to a simple
heuristic.

super logical scalar, see Cholesky.

ordering an integer scalar passed to CHOLMOD routines determining which reordering
schemes are tried to limit sparse Cholesky fill-in.

inplace whether sparse Cholesky updates should re-use the same memory location.

Value

A list with specified options used for Cholesky decomposition.

combine_chains Combine multiple mcdraws objects into a single one by combining
their chains

Description

This function can be used to combine the results of parallel simulations.

Usage

combine_chains(...)

Arguments

... objects of class mcdraws.

Value

A combined object of class mcdraws where the number of stored chains equals the sum of the
numbers of chains in the input objects.

combine_iters 9

combine_iters Combine multiple mcdraws objects into a single one by combining
their draws

Description

This function is used to combine the results of parallel posterior predictive simulations.

Usage

combine_iters(...)

Arguments

... objects of class mcdraws

Value

A combined object of class mcdraws where the number of stored draws equals the sum of the
numbers of draws in the input objects.

computeDesignMatrix Compute a list of design matrices for all terms in a model formula, or
based on a sampler environment

Description

If sampler is provided instead of formula, the design matrices are based on the model used to create
the sampler environment. In that case, if data is NULL, the design matrices stored in sampler are
returned, otherwise the design matrices are computed for the provided data based on the sampler’s
model. The output is a list of dense or sparse design matrices for the model components with respect
to data.

Usage

computeDesignMatrix(formula = NULL, data = NULL, labels = TRUE)

Arguments

formula model formula.

data data frame to be used in deriving the design matrices.

labels if TRUE, column names are assigned.

Value

A list of design matrices.

10 compute_GMRF_matrices

Examples

n <- 1000
dat <- data.frame(

x = rnorm(n),
f = factor(sample(1:50, n, replace=TRUE))

)
str(computeDesignMatrix(~ x, dat)[[1]])
model <- ~ reg(~x, name="beta") + gen(~x, factor=~f, name="v")
X <- computeDesignMatrix(model, dat)
str(X)

compute_GMRF_matrices Compute (I)GMRF incidence, precision and restriction matrices cor-
responding to a generic model component

Description

This function computes incidence, precision and restriction matrices, or a subset thereof, for a
Gaussian Markov Random Field (GMRF). A GMRF is specified by a formula passed to the factor
argument, in the same way as for the factor argument of gen.

Usage

compute_GMRF_matrices(
factor,
data,
D = TRUE,
Q = TRUE,
R = TRUE,
cols2remove = NULL,
remove.redundant.R.cols = TRUE,
enclos = .GlobalEnv,
n.parent = 1L,
...

)

Arguments

factor factor formula of a generic model component, see gen.

data data frame to be used in deriving the matrices.

D if TRUE compute the incidence matrix.

Q if TRUE compute the precision matrix.

R if TRUE compute the restriction matrix.

cols2remove if an integer vector is passed, the dimensions (columns of D, rows and columns
of Q and rows of R) that are removed. This can be useful in the case of empty
domains.

correlation 11

remove.redundant.R.cols

whether to test for and remove redundant restrictions from restriction matrix R

enclos enclosure to look for objects not found in data.

n.parent for internal use; in case of custom factor, the number of frames up the calling
stack in which to evaluate any custom matrices

... further arguments passed to economizeMatrix.

Value

A list containing some or all of the components D (incidence matrix), Q (precision matrix) and R
(restriction matrix).

Examples

n <- 1000
dat <- data.frame(

x = rnorm(n),
f1 = factor(sample(1:50, n, replace=TRUE)),
f2 = factor(sample(1:10, n, replace=TRUE))

)
mats <- compute_GMRF_matrices(~ f1 * RW1(f2), dat)
str(mats)

correlation Correlation factor structures in generic model components

Description

Element ’factor’ of a model component created using function gen is a formula composed of several
possible terms described below. It is used to derive a (typically sparse) precision matrix for a set
of coefficients, and possibly a matrix representing a set of linear constraints to be imposed on the
coefficient vector.

iid(f) Independent effects corresponding to the levels of factor f.

RW1(f, circular=FALSE, w=NULL) First-order random walk over the levels of factor f. The
random walk can be made circular and different (fixed) weights can be attached to the inno-
vations. If specified, w must be a positive numeric vector of length one less than the number
of factor levels. For example, if the levels correspond to different times, it would often be
reasonable to choose w proportional to the reciprocal time differences. For equidistant times
there is generally no need to specify w.

RW2(f) Second-order random walk.

AR1(f, phi, w=NULL) First-order autoregressive correlation structure among the levels of f. Re-
quired argument is the (fixed) autoregressive parameter phi. For irregularly spaced AR(1)
processes weights can be specified, in the same way as for RW1.

season(f, period) Dummy seasonal with period period.

12 correlation

spatial(f, poly.df, snap, queen, derive.constraints=FALSE) CAR spatial correlation. Argument
poly.df can either be an object of (S4) class SpatialPolygonsDataFrame or an object of
(S3) class sf. The latter can be obtained, e.g., from reading in a shape file using function
st_read. Arguments snap and queen are passed to poly2nb. If derive.constraints=TRUE
the constraint matrix for an IGMRF model component is formed by computing the singular
vectors of the precision matrix.

spline(f, knots, degree) P-splines, i.e. penalized B-splines structure over the domain of a quan-
titative variable f. Arguments knots and degree are passed to splineDesign. If knots is a
single value it is interpreted as the number of knots, otherwise as a vector of knot positions.
By default 40 equally spaced knots are used, and a degree of 3.

custom(f, D=NULL, Q=NULL, R=NULL, derive.constraints=NULL) Either a custom precision
or incidence matrix associated with factor f can be passed to argument Q or D. Optionally a
constraint matrix can be supplied as R, or constraints can be derived from the null space of the
precision matrix by setting derive.constraints=TRUE.

Usage

iid(name)

RW1(name, circular = FALSE, w = NULL)

RW2(name)

AR1(name, phi, w = NULL)

season(name, period)

spatial(name, poly.df, snap = sqrt(.Machine$double.eps), queen = TRUE)

spline(name, knots, degree)

custom(name, D = NULL, Q = NULL, R = NULL, derive.constraints = NULL)

Arguments

name name of a variable, unquoted.

circular whether the random walk is circular.

w a vector of weights.

phi value of an autoregressive parameter.

period a positive integer specifying the seasonal period.

poly.df a spatial data frame.

snap passed to poly2nb.

queen passed to poly2nb.

knots passed to splineDesign.

degree passed to splineDesign.

correlation 13

D custom incidence matrix.

Q custom precision matrix.

R custom restriction matrix.
derive.constraints

whether to derive the constraint matrix for an IGMRF model component numer-
ically from the precision matrix.

References

B. Allevius (2018). On the precision matrix of an irregularly sampled AR(1) process. arXiv:1801.03791.

H. Rue and L. Held (2005). Gaussian Markov Random Fields. Chapman & Hall/CRC.

Examples

example of CAR spatial random effects
if (requireNamespace("sf")) {

1. load a shape file of counties in North Carolina
nc <- sf::st_read(system.file("shape/nc.shp", package="sf"))
2. generate some data according to a model with a few regression
effects, as well as spatial random effects
gd <- generate_data(

~ reg(~ AREA + BIR74, prior=pr_normal(precision=1), name="beta") +
gen(factor = ~ spatial(NAME, poly.df=nc), name="vs"),

sigma.mod = pr_invchisq(df=10, scale=1),
data = nc

)
add the generated target variable and the spatial random effects to the
spatial dataframe object
nc$y <- gd$y
nc$vs_true <- gd$pars$vs
3. fit a model to the generated data, and see to what extent the
parameters used to generate the data, gd$pars, are reproduced
sampler <- create_sampler(

y ~ reg(~ AREA + BIR74, prior=pr_normal(precision=1), name="beta") +
gen(factor = ~ spatial(NAME, poly.df=nc), name="vs"),
block=TRUE, data=nc

)
sim <- MCMCsim(sampler, store.all=TRUE, n.iter=600, n.chain=2, verbose=FALSE)
(summ <- summary(sim))
nc$vs <- summ$vs[, "Mean"]
plot(nc[c("vs_true", "vs")])
plot(gd$pars$vs, summ$vs[, "Mean"]); abline(0, 1, col="red")

}

14 create_sampler

create_sampler Create a sampler object

Description

This function sets up a sampler object, based on the specification of a model. The object contains
functions to draw a set of model parameters from their prior and conditional posterior distributions,
and to generate starting values for the MCMC simulation. The functions share a common environ-
ment containing precomputed quantities such as design matrices based on the model and the data.
The sampler object is the main input for the MCMC simulation function MCMCsim.

Usage

create_sampler(
formula,
data = NULL,
family = "gaussian",
ny = NULL,
ry = NULL,
r.mod,
sigma.fixed = NULL,
sigma.mod = NULL,
Q0 = NULL,
formula.V = NULL,
logJacobian = NULL,
linpred = NULL,
compute.weights = FALSE,
block = NULL,
prior.only = FALSE,
control = sampler_control()

)

Arguments

formula formula to specify the response variable and additive model components. The
model components form the linear predictor part of the model. A model compo-
nent on the right hand side can be either a regression term specified by reg(...),
a covariates subject to error term specified by mec(...), or a generic random
effect term specified by gen(...). See for details the help pages for these model
component creation functions. An offset can be specified as offset(...).
Other terms in the formula are collectively interpreted as ordinary regression
effects, treated in the same way as a reg(...) term, but without the option to
change the prior.

data data frame with n rows in which the variables specified in model components
can be found.

create_sampler 15

family character string describing the data distribution. The default is ’gaussian’. Other
options are ’binomial’, ’multinomial’, ’negbinomial’ for the negative binomial
distribution, ’poisson’, and ’gamma’. See mcmcsae-family for the related func-
tions that can be used to specify family and associated parameters and controls.
For the binomial distribution logistic and probit link functions are supported, the
latter only for binary data. For the negative binomial, Poisson and gamma sam-
pling distributions a log link function is assumed. Note that currently family
= 'poisson' is implemented using the negative binomial distribution with its
(reciprocal) overdispersion parameter set to a very large value. For categorical
or multinomial data, family = "multinomial" can be used. The implementa-
tion is based on a stick-breaking representation of the multinomial distribution,
and the logistic link function relates each category except the last to a linear
predictor. The categories can be referenced in the model specification formula
by ’cat_’.

ny in case family="binomial" the (vector of) numbers of trials. It can be either a
numeric vector or the name of a variable in data. Defaults to a vector of 1s.

ry in case family="negbinomial" the known, i.e. fixed part of the (reciprocal)
dispersion parameter. It can be specified either as a numeric vector or the name
of a numeric variable in data. The overall dispersion parameter is the product
of ry with a positive scalar factor modelled as specified by argument r.mod.
By default ry is taken to be 1. For family = "poisson" a single value can be
specified, determining how well the Poisson distribution is approximated by the
negative binomial distribution. The value should be large enough such that the
negative binomial’s overdispersion becomes negligible, but not too large as this
might result in slow MCMC mixing. The default is ry=100 in this case.

r.mod prior specification for a scalar (reciprocal) dispersion parameter of the nega-
tive binomial distribution. The prior can be specified by a call to a prior spec-
ification function. Currently pr_invchisq, pr_gig and pr_fixed are sup-
ported. The default is a chi-squared prior with 1 degree of freedom. To set
the overall dispersion parameter to the value(s) specified by ry, use r.mod =
pr_fixed(value=1).

sigma.fixed for Gaussian models, if TRUE the residual standard deviation parameter ’sigma_’
is fixed at 1. In that case argument sigma.mod is ignored. This is convenient
for Fay-Herriot type models with (sampling) variances assumed to be known.
Default is FALSE.

sigma.mod prior for the variance parameter of a gaussian sampling distribution. This can
be specified by a call to one of the prior specification functions pr_invchisq,
pr_exp, pr_gig or pr_fixed for inverse chi-squared, exponential, generalized
inverse gaussian or degenerate prior distribution, respectively. The default is an
improper prior pr_invchisq(df=0, scale=1). A half-t prior on the standard
deviation can be specified using pr_invchisq with a chi-squared distributed
scale parameter.

Q0 n x n data-level precision matrix for a Gaussian model. It defaults to the unit
matrix. If an n-vector is provided it will be expanded to a (sparse) diagonal
matrix with Q0 on its diagonal. If a name is supplied it will be looked up in
data and subsequently expanded to a diagonal matrix.

16 create_sampler

formula.V a formula specifying the terms of a variance model in the case of a Gaussian
likelihood. Currently two types of terms are supported: a regression term for the
log-variance specified with vreg(...), and a term vfac(...) for multiplicative
modeled factors at a certain level specified by a factor variable. By using unit-
level inverse-chi-squared factors the marginal sampling distribution becomes a
Student-t distribution, and by using unit-level exponential factors it becomes a
Laplace or double exponential distribution.

logJacobian if the data are transformed the logarithm of the Jacobian can be supplied so that
it is incorporated in all log-likelihood computations. This can be useful for com-
paring information criteria for different transformations. It should be supplied
as a vector of the same size as the response variable, and is currently only sup-
ported if family="gaussian". For example, when a log-transformation is used
on response vector y, the vector -log(y) should be supplied.

linpred a list of matrices defining (possibly out-of-sample) linear predictors to be sim-
ulated. This allows inference on e.g. (sub)population totals or means. The
list must be of the form list(name_1=X_1, ...) where the names refer to the
model component names and predictions are computed by summing X_i %*%
p[[name_i]]. Alternatively, linpred="fitted" can be used as a short-cut for
simulations of the full in-sample linear predictor.

compute.weights

if TRUE weights are computed for each element of linpred. Note that for a large
dataset in combination with vector-valued linear predictors the weights can take
up a lot of memory. By default only means are stored in the simulation carried
out using MCMCsim.

block DEPRECATED, please use argument control instead, see also sampler_control.
Note that this parameter is now by default set to TRUE.

prior.only whether a sampler is set up only for sampling from the prior or for sampling
from both prior and posterior distributions. Default FALSE. If TRUE there is no
need to specify a response in formula. This is used by generate_data, which
samples from the prior predictive distribution.

control a list with further computational options. These options can be specified using
function sampler_control.

Details

The right hand side of the formula argument to create_sampler can be used to specify additive
model components. Currently four model components are supported: reg(...) for regression
or ’fixed’ effects, gen(...) for generic random effects, mec(...) for measurement in covariates
effects, and brt(...) for a Bayesian additive regression trees component. Note that an offset can
be added separately, in the usual way using offset(...).

For gaussian models, formula.V can be used to specify the variance structure of the model. Cur-
rently two specialized variance model components are supported, vreg(...) for regression effects
predicting the log-variance and vfac(...) for modeled variance factors.

Value

A sampler object, which is the main input for the MCMC simulation function MCMCsim. The sam-
pler object is an environment with precomputed quantities and functions. The main functions are

create_TMVN_sampler 17

rprior, which returns a sample from the prior distributions, draw, which returns a sample from the
full conditional posterior distributions, and start, which returns a list with starting values for the
Gibbs sampler. If prior.only is TRUE, functions draw and start are not created.

References

J.H. Albert and S. Chib (1993). Bayesian analysis of binary and polychotomous response data.
Journal of the American statistical Association 88(422), 669-679.

D. Bates, M. Maechler, B. Bolker and S.C. Walker (2015). Fitting Linear Mixed-Effects Models
Using lme4. Journal of Statistical Software 67(1), 1-48.

S.W. Linderman, M.J. Johnson and R.P. Adams (2015). Dependent multinomial models made easy:
Stick-breaking with the Polya-Gamma augmentation. Advances in Neural Information Processing
Systems, 3456-3464.

P.A. Parker, S.H. Holan and R. Janicki (2023). Conjugate Modeling Approaches for Small Area
Estimation with Heteroscedastic Structure. Journal of Survey Statistics and Methodology, smad002.

N. Polson, J.G. Scott and J. Windle (2013). Bayesian Inference for Logistic Models Using Polya-
Gamma Latent Variables. Journal of the American Statistical Association 108(504), 1339-1349.

H. Rue and L. Held (2005). Gaussian Markov Random Fields. Chapman & Hall/CRC.

M. Zhou and L. Carin (2015). Negative Binomial Process Count and Mixture Modeling. IEEE
Transactions on Pattern Analysis and Machine Intelligence 37(2), 307-320.

Examples

first generate some data
n <- 200
x <- rnorm(n)
y <- 0.5 + 2*x + 0.3*rnorm(n)
create a sampler for a simple linear regression model
sampler <- create_sampler(y ~ x)
sim <- MCMCsim(sampler)
(summary(sim))

y <- rbinom(n, 1, 1 / (1 + exp(-(0.5 + 2*x))))
create a sampler for a binary logistic regression model
sampler <- create_sampler(y ~ x, family="binomial")
sim <- MCMCsim(sampler)
(summary(sim))

create_TMVN_sampler Set up a sampler object for sampling from a possibly truncated and
degenerate multivariate normal distribution

18 create_TMVN_sampler

Description

This function sets up an object for multivariate normal sampling based on a specified precision
matrix. Linear equality and inequality restrictions are supported. For sampling under inequality
restrictions four algorithms are available. The default in that case is an exact Hamiltonian Monte
Carlo algorithm (Pakman and Paninski, 2014). A related algorithm is the zig-zag Hamiltonian
Monte Carlo method (Nishimura et al., 2021) in which momentum is sampled from a Laplace
instead of normal distribution. Alternatively, a Gibbs sampling algorithm can be used (Rodriguez-
Yam et al., 2004). The fourth option is a data augmentation method that samples from a smooth
approximation to the truncated multivariate normal distribution (Souris et al., 2018).

Usage

create_TMVN_sampler(
Q,
mu = NULL,
Xy = NULL,
update.Q = FALSE,
update.mu = update.Q,
name = "x",
coef.names = NULL,
R = NULL,
r = NULL,
S = NULL,
s = NULL,
lower = NULL,
upper = NULL,
check.constraints = FALSE,
method = NULL,
reduce = NULL,
chol.control = chol_control()

)

Arguments

Q precision matrix of the (unconstrained) multivariate normal distribution.

mu mean of the (unconstrained) multivariate normal distribution.

Xy alternative to specifying mu; in this case mu is computed as Q−1Xy.

update.Q whether Q is updated for each draw.

update.mu whether mu is updated for each draw. By default equal to update.Q.

name name of the TMVN vector parameter.

coef.names optional labels for the components of the vector parameter.

R equality restriction matrix.

r rhs vector for equality constraints R′x = r, where R′ denotes the transpose of
R.

S inequality restriction matrix.

create_TMVN_sampler 19

s rhs vector for inequality constraints S′x >= s, where S′ denotes the transpose
of S.

lower alternative to s for two-sided inequality restrictions lower <= S′x <= upper.

upper alternative to s for two-sided inequality restrictions lower <= S′x <= upper.
check.constraints

if TRUE check whether the starting values satisfy all constraints.

method sampling method. The options are "direct" for direct sampling from the un-
constrained or equality constrained multivariate normal (MVN). For inequality
constrained MVN sampling three methods are supported: "HMC" for (exact)
Hamiltonian Monte Carlo, "HMCZigZag" for (exact) Hamiltonian Monte Carlo
with Laplace momentum, "Gibbs" for a component-wise Gibbs sampling ap-
proach, and "softTMVN" for a data augmentation method that samples from
a smooth approximation to the truncated MVN. Alternatively, the method set-
ting functions m_direct, m_HMC, m_HMC_ZigZag, m_Gibbs or m_softTMVN can
be used to select the method and possibly set some of its options to non-default
values, see TMVN-methods.

reduce whether to a priori restrict the simulation to the subspace defined by the equality
constraints.

chol.control options for Cholesky decomposition, see chol_control.

Details

The componentwise Gibbs sampler uses univariate truncated normal samplers as described in Botev
and L’Ecuyer (2016). These samplers are implemented in R package TruncatedNormal, but here
translated to C++ for an additional speed-up.

Value

An environment for sampling from a possibly degenerate and truncated multivariate normal distri-
bution.

Author(s)

Harm Jan Boonstra, with help from Grzegorz Baltissen

References

Z.I. Botev and P. L’Ecuyer (2016). Simulation from the Normal Distribution Truncated to an Inter-
val in the Tail. in VALUETOOLS.

Y. Cong, B. Chen and M. Zhou (2017). Fast simulation of hyperplane-truncated multivariate normal
distributions. Bayesian Analysis 12(4), 1017-1037.

Y. Li and S.K. Ghosh (2015). Efficient sampling methods for truncated multivariate normal and
student-t distributions subject to linear inequality constraints. Journal of Statistical Theory and
Practice 9(4), 712-732.

A. Nishimura, Z. Zhang and M.A. Suchard (2021). Hamiltonian zigzag sampler got more momen-
tum than its Markovian counterpart: Equivalence of two zigzags under a momentum refreshment
limit. arXiv:2104.07694.

20 gen

A. Pakman and L. Paninski (2014). Exact Hamiltonian Monte Carlo for truncated multivariate
gaussians. Journal of Computational and Graphical Statistics 23(2), 518-542.

G. Rodriguez-Yam, R.A. Davis and L.L. Scharf (2004). Efficient Gibbs sampling of truncated
multivariate normal with application to constrained linear regression. Unpublished manuscript.

H. Rue and L. Held (2005). Gaussian Markov Random Fields. Chapman & Hall/CRC.

A. Souris, A. Bhattacharya and P. Debdeep (2018). The Soft Multivariate Truncated Normal Dis-
tribution. arXiv:1807.09155.

K.A. Valeriano, C.E. Galarza and L.A. Matos (2023). Moments and random number generation for
the truncated elliptical family of distributions. Statistics and Computing 33(1), 1-20.

Examples

S <- cbind(diag(2), c(-1, 1), c(1.1, -1)) # inequality matrix
S'x >= 0 represents the wedge x1 <= x2 <= 1.1 x1
example taken from Pakman and Paninski (2014)
1. exact Hamiltonian Monte Carlo (Pakman and Paninski, 2014)
sampler <- create_TMVN_sampler(Q=diag(2), mu=c(4, 4), S=S, method="HMC")
sim <- MCMCsim(sampler, n.iter=600, verbose=FALSE)
summary(sim)
plot(as.matrix(sim$x), pch=".")
2. exact Hamiltonian Monte Carlo with Laplace momentum (Nishimura et al., 2021)
sampler <- create_TMVN_sampler(Q=diag(2), mu=c(4, 4), S=S, method="HMCZigZag")
sim <- MCMCsim(sampler, n.iter=600, verbose=FALSE)
summary(sim)
plot(as.matrix(sim$x), pch=".")
3. Gibbs sampling approach (Rodriguez-Yam et al., 2004)
sampler <- create_TMVN_sampler(Q=diag(2), mu=c(4, 4), S=S, method="Gibbs")
sim <- MCMCsim(sampler, burnin=500, n.iter=2000, verbose=FALSE)
summary(sim)
plot(as.matrix(sim$x), pch=".")
4. soft TMVN approximation (Souris et al., 2018)
sampler <- create_TMVN_sampler(Q=diag(2), mu=c(4, 4), S=S, method="softTMVN")
sim <- MCMCsim(sampler, n.iter=600, verbose=FALSE)
summary(sim)
plot(as.matrix(sim$x), pch=".")

gen Create a model component object for a generic random effects com-
ponent in the linear predictor

Description

This function is intended to be used on the right hand side of the formula argument to create_sampler
or generate_data.

gen 21

Usage

gen(
formula = ~1,
factor = NULL,
remove.redundant = FALSE,
drop.empty.levels = FALSE,
X = NULL,
var = NULL,
prior = NULL,
Q0 = NULL,
PX = NULL,
GMRFmats = NULL,
priorA = NULL,
Leroux = FALSE,
R0 = NULL,
RA = NULL,
constr = NULL,
S0 = NULL,
SA = NULL,
formula.gl = NULL,
a = 1000,
name = "",
sparse = NULL,
control = gen_control(),
debug = FALSE

)

Arguments

formula a model formula specifying the effects that vary over the levels of the factor vari-
able(s) specified by argument factor. Defaults to ~1, corresponding to random
intercepts. If X is specified formula is ignored. Variable names are looked up in
the data frame passed as data argument to create_sampler or generate_data,
or in environment(formula).

factor a formula with factors by which the effects specified in the formula argument
vary. Often only one such factor is needed but multiple factors are allowed
so that interaction terms can be modeled conveniently. The formula must take
the form ~ f1(fac1, ...) * f2(fac2, ...) ..., where fac1, fac2 are factor
variables and f1, f2 determine the correlation structure assumed between levels
of each factor, and the ... indicate that for some correlation types further argu-
ments can be passed. Correlation structures currently supported include iid for
independent identically distributed effects, RW1 and RW2 for random walks of first
or second order over the factor levels, AR1 for first-order autoregressive effects,
season for seasonal effects, spatial for spatial (CAR) effects and custom for
supplying a custom precision matrix corresponding to the levels of the factor.
For further details about the correlation structures, and further arguments that
can be passed, see correlation. Argument factor is ignored if X is specified.
The factor variables are looked up in the data frame passed as data argument to

22 gen

create_sampler or generate_data, or in environment(formula).
remove.redundant

whether redundant columns should be removed from the model matrix associ-
ated with formula. Default is FALSE.

drop.empty.levels

whether to remove factor levels without observations.

X A (possibly sparse) design matrix. This can be used instead of formula and
factor.

var the (co)variance structure among the varying effects defined by formula over
the levels of the factors defined by factor. The default is "unstructured",
meaning that a full covariance matrix parameterization is used. For uncorrelated
effects with unequal variances use var="diagonal". For uncorrelated effects
with equal variances use var="scalar". In the case of a single varying effect
there is no difference between these choices.

prior the prior specification for the variance parameters of the random effects. These
can currently be specified by a call to pr_invwishart in case var="unstructured"
or by a call to pr_invchisq otherwise. See the documentation of those prior
specification functions for more details.

Q0 precision matrix associated with formula. This can only be used in combination
with var="scalar".

PX whether parameter expansion should be used. Default is TRUE, which applies
parameter expansion with default options. The only exception is that for gamma
sampling distributions the default is FALSE, i.e. no parameter expansion. Al-
ternative options can be specified by supplying a list with one or more of the
following components:

prior prior for the multiplicative expansion parameter. Defaults to a normal
prior with mean 0 and standard deviation 1, unless the sampling distribution
is gamma in which case the default is a Multivariate Log inverse Gamma
prior. The default parameters can be changed using functions pr_normal
or pr_MLiG.

vector whether a redundant multiplicative expansion parameter is used for each
varying effect specified by formula. The default is TRUE except when
var="scalar". If FALSE a single redundant multiplicative parameter is
used.

data.scale whether the data level scale is used as a variance factor for the ex-
pansion parameters. Default is TRUE.

GMRFmats list of incidence/precision/constraint matrices. This can be specified as an alter-
native to factor. It should be a list such as that returned by compute_GMRF_matrices.
Can be used together with argument X as a flexible alternative to formula and
factor.

priorA prior distribution for scale factors at the variance scale associated with QA. In
case of IGMRF models the scale factors correspond to the innovations. The
default NULL means not to use any local scale factors. A prior can currently be
specified using pr_invchisq or pr_exp.

gen 23

Leroux this option alters the precision matrix determined by factor by taking a weighted
average of it with the identity matrix. If TRUE the model gains an additional pa-
rameter, the ’Leroux’ parameter, being the weight of the original, structured,
precision matrix in the weighted average. By default a uniform prior for the
weight and a uniform Metropolis-Hastings proposal density are employed. This
default can be changed by supplying a list with elements a, b, and a.star, b.star,
implying a beta(a, b) prior and a beta(a.star, b.star) independence proposal den-
sity. A third option is to supply a single number between 0 and 1, which is then
used as a fixed value for the Leroux parameter.

R0 an optional equality restriction matrix acting on the coefficients defined by formula,
for each level defined by factor. If c is the number of restrictions, R0 is a q0
x c matrix where q0 is the number of columns of the design matrix derived
from formula. Together with RA it defines the set of equality constraints to
be imposed on the vector of coefficients. Only allowed in combination with
var="scalar".

RA an optional equality restriction matrix acting on the coefficients defined by factor,
for each effect defined by formula. If c is the number of restrictions, RA is a l
x c matrix where l is the number of levels defined by factor. Together with R0
this defines the set of equality constraints to be imposed on the vector of coef-
ficients. If constr=TRUE, additional constraints are imposed, corresponding to
the null-vectors of the singular precision matrix in case of an intrinsic Gaussian
Markov Random Field.

constr whether constraints corresponding to the null-vectors of the precision matrix are
to be imposed on the vector of coefficients. By default this is TRUE for improper
or intrinsic GMRF model components, i.e. components with a singular precision
matrix such as random walks or CAR spatial components.

S0 an optional inequality restriction matrix acting on the coefficients defined by
formula, for each level defined by factor. If c is the number of restrictions, S0
is a q0 x c matrix where q0 is the number of columns of the design matrix derived
from formula. Together with SA it defines the set of inequality constraints to be
imposed on the vector of coefficients.

SA an optional inequality restriction matrix acting on the coefficients defined by
factor, for each effect defined by formula. If c is the number of restrictions, SA
is a l x c matrix where l is the number of levels defined by factor. Together with
S0 this defines the set of constraints to be imposed on the vector of coefficients.

formula.gl a formula of the form ~ glreg(...) for group-level predictors around which
the random effect component is hierarchically centered. See glreg for details.

a only used in case the effects are MLiG distributed, such as is assumed in case
of a gamma sampling distribution, or for gaussian variance modelling. In those
cases a controls how close the effects’ prior is to a normal prior, see pr_MLiG.

name the name of the model component. This name is used in the output of the MCMC
simulation function MCMCsim. By default the name will be ’gen’ with the number
of the model term attached.

sparse whether the model matrix associated with formula should be sparse. The de-
fault is based on a simple heuristic based on storage size.

24 generate_data

control a list with further computational options. These options can be specified using
function gen_control.

debug if TRUE a breakpoint is set at the beginning of the posterior draw function asso-
ciated with this model component. Mainly intended for developers.

Value

An object with precomputed quantities and functions for sampling from prior or conditional poste-
rior distributions for this model component. Intended for internal use by other package functions.

References

J. Besag and C. Kooperberg (1995). On Conditional and Intrinsic Autoregression. Biometrika
82(4), 733-746.

C.M. Carvalho, N.G. Polson and J.G. Scott (2010). The horseshoe estimator for sparse signals.
Biometrika 97(2), 465-480.

L. Fahrmeir, T. Kneib and S. Lang (2004). Penalized Structured Additive Regression for Space-
Time Data: a Bayesian Perspective. Statistica Sinica 14, 731-761.

A. Gelman (2006). Prior distributions for variance parameters in hierarchical models. Bayesian
Analysis 1(3), 515-533.

A. Gelman, D.A. Van Dyk, Z. Huang and W.J. Boscardin (2008). Using Redundant Parameteriza-
tions to Fit Hierarchical Models. Journal of Computational and Graphical Statistics 17(1), 95-122.

B. Leroux, X. Lei and N. Breslow (1999). Estimation of Disease Rates in Small Areas: A New
Mixed Model for Spatial Dependence. In M. Halloran and D. Berry (Eds.), Statistical Models in
Epidemiology, the Environment and Clinical Trials, 135-178.

T. Park and G. Casella (2008). The Bayesian Lasso. Journal of the American Statistical Association
103(482), 681-686.

H. Rue and L. Held (2005). Gaussian Markov Random Fields. Chapman & Hall/CRC.

generate_data Generate a data vector according to a model

Description

This function generates draws from the prior predictive distribution. Parameter values are drawn
from their priors, and consequently data is generated from the sampling distribution given these
parameter values.

Usage

generate_data(
formula,
data = NULL,
family = "gaussian",
ny = NULL,

generate_data 25

ry = NULL,
r.mod,
sigma.fixed = NULL,
sigma.mod = NULL,
Q0 = NULL,
formula.V = NULL,
linpred = NULL

)

Arguments

formula A model formula, see create_sampler. Any left-hand-side of the formula is
ignored.

data see create_sampler.

family sampling distribution family, see create_sampler.

ny see create_sampler.

ry see create_sampler.

r.mod see create_sampler.

sigma.fixed see create_sampler.

sigma.mod see create_sampler.

Q0 see create_sampler.

formula.V see create_sampler.

linpred see create_sampler.

Value

A list with a generated data vector and a list of prior means of the parameters. The parameters are
drawn from their priors.

Examples

n <- 250
dat <- data.frame(

x = rnorm(n),
g = factor(sample(1:10, n, replace=TRUE)),
ny = 10

)
gd <- generate_data(

~ reg(~ 1 + x, Q0=10, b0=c(0, 1), name="beta") + gen(factor = ~ g, name="v"),
family="binomial", ny="ny", data=dat

)
gd
plot(datx, gdy)

26 get_draw

gen_control Set computational options for the sampling algorithms used for a ’gen’
model component

Description

Set computational options for the sampling algorithms used for a ’gen’ model component

Usage

gen_control(MHprop = c("GiG", "LNRW"))

Arguments

MHprop MH proposal for the variance component in case of a MLiG prior on the coef-
ficients. The two options are "GiG" for a generalized inverse gamma proposal,
and "LNRW" for a log_normal random walk proposal. The former should ap-
proximate the conditional posterior quite well provided MLiG parameter a is
large, such that the coefficients’ prior is approximately normal.

Value

A list with computational options regarding a ’gen’ model component.

get_draw Extract a list of parameter values for a single draw

Description

Extract a list of parameter values for a single draw

Usage

get_draw(obj, iter, chain)

Arguments

obj an object of class mcdraws.

iter iteration number.

chain chain number.

Value

A list with all parameter values of draw iter from chain chain.

glreg 27

Examples

ex <- mcmcsae_example(n=50)
sampler <- create_sampler(ex$model, data=ex$dat)
sim <- MCMCsim(sampler, burnin=100, n.iter=300, thin=2, n.chain=4, store.all=TRUE)
get_draw(sim, iter=20, chain=3)

glreg Create a model object for group-level regression effects within a
generic random effects component.

Description

This function is intended to be used to specify the formula.gl argument to the gen model com-
ponent specification function. Group-level predictors and hierarchical centering are not used by
default, and they currently cannot be used in a model component that is sampled together with
another model component in the same Gibbs block.

Usage

glreg(
formula = NULL,
remove.redundant = FALSE,
prior = NULL,
Q0 = NULL,
data = NULL,
name = ""

)

Arguments

formula a formula specifying the group-level predictors to be used within a model com-
ponent. If no data is supplied the group-level predictors are derived as group-
level means from the unit-level data passed as data argument to create_sampler
or generate_data.

remove.redundant

whether redundant columns should be removed from the design matrix. Default
is FALSE.

prior prior specification for the group-level effects. Currently only normal priors with
mean 0 can be specified, using function pr_normal.

Q0 prior precision matrix for the group-level effects. The default is a zero matrix
corresponding to a noninformative improper prior. DEPRECATED, please use
argument prior instead, i.e. prior = pr_normal(precision = Q0.value).

data group-level data frame in which the group-level variables specified in formula
are looked up.

28 labels

name the name of the model component. This name is used in the output of the MCMC
simulation function MCMCsim. By default this name will be the name of the
corresponding generic random effects component appended by ’_gl’.

Value

An object with precomputed quantities for sampling from prior or conditional posterior distributions
for this model component. Only intended for internal use by other package functions.

labels Get and set the variable labels of a draws component object for a
vector-valued parameter

Description

Get and set the variable labels of a draws component object for a vector-valued parameter

Usage

S3 method for class 'dc'
labels(object, ...)

labels(object) <- value

Arguments

object a draws component object.

... currently not used.

value a vector of labels.

Value

The extractor function returns the variable labels.

Examples

ex <- mcmcsae_example()
sampler <- create_sampler(ex$model, data=ex$dat)
sim <- MCMCsim(sampler, burnin=50, n.iter=100, n.chain=1, store.all=TRUE)
labels(sim$beta)
labels(sim$v)
labels(sim$beta) <- c("a", "b")
labels(sim$beta)

matrix-vector 29

matrix-vector Fast matrix-vector multiplications

Description

Functions for matrix-vector multiplies like %*% and crossprod, but often faster for the matrix types
supported. The return value is always a numeric vector.

Usage

M %m*v% v

crossprod_mv(M, v)

Arguments

M a matrix of class ’matrix’, ’dgCMatrix’, ’dsCMatrix’, ’tabMatrix’, or ’ddiMa-
trix’.

v a numeric vector.

Value

For %m*v% the vector Mv and for crossprod_mv the vector M ′v where M ′ denotes the transpose
of M .

Examples

M <- matrix(rnorm(10*10), 10, 10)
x <- rnorm(10)
M %m*v% x
crossprod_mv(M, x)
M <- Matrix::rsparsematrix(100, 100, nnz=100)
x <- rnorm(100)
M %m*v% x
crossprod_mv(M, x)

maximize_log_lh_p Maximize the log-likelihood or log-posterior as defined by a sampler
closure

Description

Maximize the log-likelihood or log-posterior as defined by a sampler closure

30 maximize_log_lh_p

Usage

maximize_log_lh_p(
sampler,
type = c("llh", "lpost"),
method = "BFGS",
control = list(fnscale = -1),
...

)

Arguments

sampler sampler function closure, i.e. the return value of a call to create_sampler.

type either "llh" (default) or "lpost", for optimization of the log-likelihood, or the
log-posterior, respectively.

method optimization method, passed to optim.

control control parameters, passed to optim.

... other parameters passed to optim.

Value

A list of parameter values that, provided the optimization was successful, maximize the (log-
)likelihood or (log-)posterior.

Examples

n <- 1000
dat <- data.frame(

x = rnorm(n),
f = factor(sample(1:50, n, replace=TRUE))

)
df <- generate_data(

~ reg(~x, name="beta", prior=pr_normal(precision=1)) + gen(~x, factor=~f, name="v"),
sigma.fixed=TRUE, data=dat

)
dat$y <- df$y
sampler <- create_sampler(y ~ x + gen(~x, factor=~f, name="v"), data=dat)
opt <- maximize_log_lh_p(sampler)
str(opt)
plot(dfparv, optparv); abline(0, 1, col="red")

MCMC-diagnostics 31

MCMC-diagnostics Compute MCMC diagnostic measures

Description

R_hat computes Gelman-Rubin convergence diagnostics based on the MCMC output in a model
component, and n_eff computes the effective sample sizes, .i.e. estimates for the number of inde-
pendent samples from the posterior distribution.

Usage

R_hat(dc)

n_eff(dc, useFFT = TRUE, lag.max, cl = NULL)

Arguments

dc a draws component (dc) object corresponding to a model parameter.

useFFT whether to use the Fast Fourier Transform algorithm. Default is TRUE as this is
typically faster.

lag.max the lag up to which autocorrelations are computed in case useFFT=FALSE.

cl a cluster for parallel computation.

Value

In case of R_hat the split-R-hat convergence diagnostic for each component of the vector parameter,
and in case of n_eff the effective number of independent samples for each component of the vector
parameter.

References

A. Gelman and D. B. Rubin (1992). Inference from Iterative Simulation Using Multiple Sequences.
Statistical Science 7, 457-511.

A. Gelman, J.B. Carlin, H.S. Stern, D.B. Dunson, A. Vehtari and D.B. Rubin (2013). Bayesian Data
Analysis, 3rd edition. Chapman & Hall/CRC.

Examples

ex <- mcmcsae_example()
sampler <- create_sampler(ex$model, data=ex$dat)
sim <- MCMCsim(sampler, burnin=100, n.iter=300, thin=2, n.chain=4, store.all=TRUE)
n_eff(sim$beta)
n_eff(sim$v_sigma)
n_eff(sim$v_rho)
R_hat(sim$beta)
R_hat(sim$llh_)
R_hat(sim$v_sigma)

32 MCMC-object-conversion

MCMC-object-conversion

Convert a draws component object to another format

Description

Use to_mcmc to convert a draws component to class mcmc.list, allowing one to use MCMC di-
agnostic functions provided by package coda. Use as.array to convert to an array of dimension
(draws, chains, parameters). The array format is supported by some packages for analysis or
visualisation of MCMC simulation results, e.g. bayesplot. Use as.matrix to convert to a matrix,
concatenating the chains. Finally, use to_draws_array to convert either a draws component or
(a subset of components of) an mcdraws object to a draws_array object as defined in package
posterior.

Usage

to_mcmc(x)

to_draws_array(x, components = NULL)

S3 method for class 'dc'
as.array(x, ...)

S3 method for class 'dc'
as.matrix(x, colnames = TRUE, ...)

Arguments

x a component of an mcdraws object corresponding to a scalar or vector model
parameter.

components optional character vector of names of draws components in an mcdraws object.
This can be used to select a subset of components to convert to draws_array
format.

... currently ignored.

colnames whether column names should be set.

Value

The draws component(s) coerced to an mcmc.list object, a draws_array object, an array, or a
matrix.

mcmcsae-family 33

Examples

data(iris)
sampler <- create_sampler(Sepal.Length ~ reg(~ Petal.Length + Species, name="beta"), data=iris)
sim <- MCMCsim(sampler, burnin=100, n.chain=2, n.iter=400)
summary(sim)
if (require("coda", quietly=TRUE)) {

mcbeta <- to_mcmc(sim$beta)
geweke.diag(mcbeta)

}
if (require("posterior", quietly=TRUE)) {

mcbeta <- to_draws_array(sim$beta)
mcbeta
draws <- to_draws_array(sim)
str(draws)

}
str(as.array(sim$beta))
str(as.matrix(sim$beta))

generate some example data
n <- 250
dat <- data.frame(x=runif(n), f=as.factor(sample(1:5, n, replace=TRUE)))
gd <- generate_data(~ reg(~ x + f, prior=pr_normal(precision=1), name="beta"), data=dat)
dat$y <- gd$y
sampler <- create_sampler(y ~ reg(~ x + f, name="beta"), data=dat)
sim <- MCMCsim(sampler, n.chain=2, n.iter=400)
str(sim$beta)
str(as.array(sim$beta))
bayesplot::mcmc_hist(as.array(sim$beta))
bayesplot::mcmc_dens_overlay(as.array(sim$beta))
fake data simulation check:
bayesplot::mcmc_recover_intervals(as.array(sim$beta), gd$pars$beta)
bayesplot::mcmc_recover_hist(as.array(sim$beta), gd$pars$beta)

ex <- mcmcsae_example()
plot(exdatfT, exdaty)
sampler <- create_sampler(ex$model, data=ex$dat)
sim <- MCMCsim(sampler, n.chain=2, n.iter=400, store.all=TRUE)
str(sim$beta)
str(as.matrix(sim$beta))
fake data simulation check:
bayesplot::mcmc_recover_intervals(as.matrix(sim$beta), ex$pars$beta)
bayesplot::mcmc_recover_intervals(as.matrix(sim$u), ex$pars$u)

mcmcsae-family Functions for specifying a sampling distribution and link function

34 mcmcsae-family

Description

These functions are intended for use in the family argument of create_sampler. In future versions
these functions may gain additional arguments, but currently the corresponding functions gaussian
and binomial can be used as well.

Usage

f_gaussian(link = "identity")

f_binomial(link = c("logit", "probit"))

f_negbinomial(link = "logit")

f_poisson(link = "log")

f_multinomial(link = "logit", K = NULL)

f_gamma(
link = "log",
shape.vec = ~1,
shape.prior = pr_gamma(0.1, 0.1),
shape.MH.type = c("RW", "gamma")

)

f_gaussian_gamma(link = "identity", var.data, ...)

Arguments

link the name of a link function. Currently the only allowed link functions are:
"identity" for (log-)Gaussian sampling distributions, "logit" (default) and
"probit" for binomial distributions and "log" for negative binomial sampling
distributions.

K number of categories for multinomial model; this must be specified for prior
predictive sampling.

shape.vec optional formula specification of unequal shape parameter for gamma family

shape.prior prior for gamma shape parameter. Supported prior distributions: pr_fixed with
a default value of 1, pr_exp and pr_gamma. The current default is that of a fixed
shape equal to 1, i.e. pr_fixed(value=1).

shape.MH.type the type of Metropolis-Hastings algorithm employed in case the shape parameter
is to be inferred. The two choices currently supported are "RW" for a random
walk proposal on the log-shape scale and "gamma" for an approximating gamma
proposal, found using an iterative algorithm. In the latter case, a Metropolis-
Hastings accept-reject step is currently omitted, so the sampling algorithm is an
approximate one, though one that is usually quite accurate and efficient.

var.data the (variance) data for the gamma part of family gaussian_gamma.

... further arguments passed to f_gamma.

mcmcsae_example 35

Value

A family object.

References

J.W. Miller (2019). Fast and Accurate Approximation of the Full Conditional for Gamma Shape
Parameters. Journal of Computational and Graphical Statistics 28(2), 476-480.

mcmcsae_example Generate artificial data according to an additive spatio-temporal
model

Description

This function is used to generate data for several examples.

Usage

mcmcsae_example(n = 100L, family = "gaussian")

Arguments

n the size of the generated dataset.

family sampling distribution family, see create_sampler.

Value

A list containing the generated dataset, the values of the model parameters, and the model speci-
fication as a formula.

Examples

ex <- mcmcsae_example()
str(ex)

36 MCMCsim

MCMCsim Run a Markov Chain Monte Carlo simulation

Description

Given a sampler object this function runs a MCMC simulation and stores the posterior draws. A
sampler object for a wide class of multilevel models can be created using create_sampler, but
users can also define their own sampler functions, see below. MCMCsim allows to choose the param-
eters for which simulation results must be stored. It is possible to define derived quantities that will
also be stored. To save memory, it is also possible to only store Monte Carlo means/standard errors
for some large vector parameters, say. Another way to use less memory is to save the simulation
results of large vector parameters to file. For parameters specified in plot.trace trace plots or pair
plots of multiple parameters are displayed during the simulation.

Usage

MCMCsim(
sampler,
from.prior = FALSE,
n.iter = 1000L,
n.chain = 3L,
thin = 1L,
burnin = if (from.prior) 0L else 250L,
start = NULL,
store,
store.all = FALSE,
pred = NULL,
store.mean,
store.sds = FALSE,
to.file = NULL,
filename = "MCdraws_",
write.single.prec = FALSE,
verbose = TRUE,
n.progress = n.iter%/%10L,
trace.convergence = NULL,
stop.on.convergence = FALSE,
convergence.bound = 1.05,
plot.trace = NULL,
add.to.plot = TRUE,
plot.type = "l",
n.cores = 1L,
cl = NULL,
seed = NULL,
export = NULL

)

MCMCsim 37

Arguments

sampler sampler object created by create_sampler.
from.prior whether to sample from the prior. By default from.prior=FALSE and samples

are taken from the posterior.
n.iter number of draws after burnin.
n.chain number of independent chains.
thin only every thin’th draw is kept.
burnin number of draws to discard at the beginning of each chain.
start an optional function to generate starting values or a list containing for each chain

a named list of starting values. It may be used to provide starting values for some
or all parameters. The sampler object’s own start function, if it exists, is called
to generate any starting values not provided by the user.

store vector of names of parameters to store MCMC draws for. By default, simula-
tions are stored for all parameters returned by sampler$store_default.

store.all if TRUE simulation vectors of all parameters returned by the sampling function of
sampler will be stored. The default is FALSE, and in that case only simulations
for the parameters named in store are stored.

pred list of character strings defining derived quantities to be computed (and stored)
for each draw.

store.mean vector of names of parameters for which only the mean (per chain) is to be
stored. This may be useful for large vector parameters (e.g. regression residuals)
for which storing complete MCMC output would use too much memory. The
function sampler$store_mean_default exists it provides the default.

store.sds if TRUE store for all parameters in store.mean, besides the mean, also the stan-
dard deviation. Default is FALSE.

to.file vector of names of parameters to write to file.
filename name of file to write parameter draws to. Each named parameter is written to a

separate file, named filename_parametername.
write.single.prec

Whether to write to file in single precision. Default is FALSE.
verbose if FALSE no output is sent to the screen during the simulation. TRUE by default.
n.progress update diagnostics and plots after so many iterations.
trace.convergence

vector of names of parameters for which Gelman-Rubin R-hat diagnostics are
printed to the screen every n.progress iterations.

stop.on.convergence

if TRUE stop the simulation if the R-hat diagnostics for all parameters in trace.convergence
are less than convergence.bound.

convergence.bound

threshold used with stop.on.convergence.
plot.trace character vector of parameter names for which to plot draws during the simula-

tion. For one or two parameters trace plots will be shown, and if more parame-
ters are specified the results will be displayed in a pairs plot. For vector param-
eters a specific component can be selected using brackets, e.g. "beta[2]".

38 MCMCsim

add.to.plot if TRUE the plot is updated every n.progress iterations, otherwise a new plot
(with new scales) is created after every n.progress iterations.

plot.type default is "l" (lines).

n.cores the number of cpu cores to use. Default is 1, i.e. no parallel computation. If an
existing cluster cl is provided, n.cores will be set to the number of workers in
that cluster.

cl an existing cluster can be passed for parallel computation. If NULL and n.cores
> 1, a new cluster is created.

seed a random seed (integer). For parallel computation it is used to independently
seed RNG streams for all workers.

export a character vector with names of objects to export to the workers. This may be
needed for parallel execution if expressions in pred depend on global variables.

Details

A sampler object is an environment containing data and functions to use for sampling. The follow-
ing elements of the sampler object are used by MCMCsim:

start function to generate starting values.

draw function to draw samples, typically from a full conditional posterior distribution.

rprior function to draw from a prior distribution.

coef.names list of vectors of parameter coefficient names, for vector parameters.

MHpars vector of names of parameters that are sampled using a Metropolis-Hastings (MH) sam-
pler; acceptance rates are kept for these parameters.

adapt function of acceptance rates of MHpars to adapt MH-kernel, called every 100 iterations dur-
ing the burn-in period.

Value

An object of class mcdraws containing posterior draws as well as some meta information.

Examples

1. create a sampler function
sampler <- new.env()
sampler$draw <- function(p) list(x=rnorm(1L), y=runif(1L))
2. do the simulation
sim <- MCMCsim(sampler, store=c("x", "y"))
str(sim)
summary(sim)

example that requires start values or a start function
sampler$draw <- function(p) list(x=rnorm(1L), y=p$x * runif(1L))
sampler$start <- function(p) list(x=rnorm(1L), y=runif(1L))
sim <- MCMCsim(sampler, store=c("x", "y"))
summary(sim)
plot(sim, c("x", "y"))

mec 39

example using create_sampler; first generate some data
n <- 100
dat <- data.frame(x=runif(n), f=as.factor(sample(1:4, n, replace=TRUE)))
gd <- generate_data(~ reg(~ x + f, prior=pr_normal(precision=1), name="beta"), data=dat)
dat$y <- gd$y
sampler <- create_sampler(y ~ x + f, data=dat)
sim <- MCMCsim(sampler, burnin=100, n.iter=400, n.chain=2)
(summary(sim))
gd$pars

mec Create a model component object for a regression (fixed effects) com-
ponent in the linear predictor with measurement errors in quantitative
covariates

Description

This function is intended to be used on the right hand side of the formula argument to create_sampler
or generate_data. It creates an additive regression term in the model’s linear predictor. Covari-
ates are assumed to be measured subject to normally distributed errors with zero mean and variance
specified using the formula or V arguments. Note that this means that formula should only con-
tain quantitative variables, and no intercept. By default, the prior for the regression coefficients
is improper uniform. A proper normal prior can be set up using function pr_normal, and passed
to argument prior. It should be noted that pr_normal expects a precision matrix as input for its
second argument, and that the prior variance (matrix) is taken to be the inverse of this precision
matrix, where in case the model’s family is "gaussian" this matrix is additionally multiplied by
the residual scalar variance parameter sigma_^2.

Usage

mec(
formula = ~1,
sparse = NULL,
X = NULL,
V = NULL,
prior = NULL,
Q0 = NULL,
b0 = NULL,
R = NULL,
r = NULL,
S = NULL,
s = NULL,
lower = NULL,
upper = NULL,
name = "",
debug = FALSE

)

40 mec

Arguments

formula a formula specifying the predictors subject to measurement error and possibly
their variances as well. In the latter case the formula syntax ~ (x1 | V.x1) +
(x2 | V.x2) + ... should be used where x1, x2, ... are the names of (quan-
titative) predictors and V.x1, V.x2, ... are the names of the variables holding
the corresponding measurement error variances. If only the predictors are spec-
ified the formula has the usual form ~ x1 + x2 + In that case variances
should be specified using argument V. All variable names are looked up in the
data frame passed as data argument to create_sampler or generate_data, or
in environment(formula).

sparse whether the model matrix associated with formula should be sparse. The de-
fault is to base this on a simple heuristic.

X a (possibly sparse) design matrix can be specified directly, as an alternative to
the creation of one based on formula. If X is specified formula is ignored.

V measurement error variance; can contain zeros
prior prior specification for the regression coefficients. Currently only normal priors

are supported, specified using function pr_normal.
Q0 prior precision matrix for the regression effects. The default is a zero matrix

corresponding to a noninformative improper prior. It can be specified as a scalar
value, as a numeric vector of appropriate length, or as a matrix object. DEP-
RECATED, please use argument prior instead, i.e. prior = pr_normal(mean
= b0.value, precision = Q0.value).

b0 prior mean for the regression effect. Defaults to a zero vector. It can be specified
as a scalar value or as a numeric vector of appropriate length. DEPRECATED,
please use argument prior instead, i.e. prior = pr_normal(mean = b0.value,
precision = Q0.value).

R optional constraint matrix for equality restrictions R’x = r where x is the vector
of regression effects.

r right hand side for the equality constraints.
S optional constraint matrix for inequality constraints S’x >= s where x is the

vector of regression effects.
s right hand side for the inequality constraints.
lower as an alternative to s, lower and upper may be specified for two-sided con-

straints lower <= S’x <= upper.
upper as an alternative to s, lower and upper may be specified for two-sided con-

straints lower <= S’x <= upper.
name the name of the model component. This name is used in the output of the MCMC

simulation function MCMCsim. By default the name will be ’reg’ with the number
of the model term attached.

debug if TRUE a breakpoint is set at the beginning of the posterior draw function asso-
ciated with this model component. Mainly intended for developers.

Value

An object with precomputed quantities and functions for sampling from prior or conditional poste-
rior distributions for this model component. Intended for internal use by other package functions.

model-information-criteria 41

References

L.M. Ybarra and S.L. Lohr (2008). Small area estimation when auxiliary information is measured
with error. Biometrika 95(4), 919-931.

S. Arima, G.S. Datta and B. Liseo (2015). Bayesian estimators for small area models when auxiliary
information is measured with error. Scandinavian Journal of Statistics 42(2), 518-529.

Examples

example of Ybarra and Lohr (2008)
m <- 50
X <- rnorm(m, mean=5, sd=3) # true covariate values
v <- rnorm(m, sd=2)
theta <- 1 + 3*X + v # true values
psi <- rgamma(m, shape=4.5, scale=2)
e <- rnorm(m, sd=sqrt(psi)) # sampling error
y <- theta + e # direct estimates
C <- c(rep(3, 10), rep(0, 40)) # measurement error for first 10 values
W <- X + rnorm(m, sd=sqrt(C)) # covariate subject to measurement error

fit Ybarra-Lohr model
sampler <- create_sampler(

y ~ 1 + mec(~ 0 + W, V=C) + gen(factor=~local_),
Q0=1/psi, sigma.fixed=TRUE, linpred="fitted"

)
sim <- MCMCsim(sampler, n.iter=800, n.chain=2, store.all=TRUE, verbose=FALSE)
(summ <- summary(sim))
plot(X, W, xlab="true X", ylab="inferred X")
points(X, summ$mec2_X[, "Mean"], col="green")
abline(0, 1, col="red")
legend("topleft", legend=c("prior mean", "posterior mean"), col=c("black", "green"), pch=c(1,1))

model-information-criteria

Compute DIC, WAIC and leave-one-out cross-validation model mea-
sures

Description

Compute the Deviance Information Criterion (DIC) or Watanabe-Akaike Information Criterion
(WAIC) from an object of class mcdraws output by MCMCsim. Method waic.mcdraws computes
WAIC using package loo. Method loo.mcdraws also depends on package loo to compute a Pareto-
smoothed importance sampling (PSIS) approximation to leave-one-out cross-validation.

42 model-information-criteria

Usage

compute_DIC(x, use.pV = FALSE)

compute_WAIC(
x,
diagnostic = FALSE,
batch.size = NULL,
show.progress = TRUE,
cl = NULL,
n.cores = 1L

)

S3 method for class 'mcdraws'
waic(x, by.unit = FALSE, ...)

S3 method for class 'mcdraws'
loo(x, by.unit = FALSE, r_eff = FALSE, n.cores = 1L, ...)

Arguments

x an object of class mcdraws.

use.pV whether half the posterior variance of the deviance should be used as an alterna-
tive estimate of the effective number of model parameters for DIC.

diagnostic whether vectors of log-pointwise-predictive-densities and pointwise contribu-
tions to the WAIC effective number of model parameters should be returned.

batch.size number of data units to process per batch.

show.progress whether to show a progress bar.

cl an existing cluster can be passed for parallel computation. If cl is provided,
n.cores will be set to the number of workers in that cluster. If NULL and
n.cores > 1, a new cluster is created.

n.cores the number of cpu cores to use. Default is one, i.e. no parallel computation.

by.unit if TRUE the computation is carried out unit-by-unit, which is slower but uses
much less memory.

... Other arguments, passed to loo. Not currently used by waic.mcdraws.

r_eff whether to compute relative effective sample size estimates for the likelihood
of each observation. This takes more time, but should result in a better PSIS
approximation. See loo.

Value

For compute_DIC a vector with the deviance information criterion and effective number of model
parameters. For compute_WAIC a vector with the WAIC model selection criterion and WAIC ef-
fective number of model parameters. Method waic returns an object of class waic, loo, see the
documentation for waic in package loo. Method loo returns an object of class psis_loo, see loo.

model_matrix 43

References

D. Spiegelhalter, N. Best, B. Carlin and A. van der Linde (2002). Bayesian Measures of Model
Complexity and Fit. Journal of the Royal Statistical Society B 64 (4), 583-639.

S. Watanabe (2010). Asymptotic equivalence of Bayes cross validation and widely applicable in-
formation criterion in singular learning theory. Journal of Machine Learning 11, 3571-3594.

A. Gelman, J. Hwang and A. Vehtari (2014). Understanding predictive information criteria for
Bayesian models. Statistics and Computing 24, 997-1016.

A. Vehtari, D. Simpson, A. Gelman, Y. Yao and J. Gabry (2015). Pareto smoothed importance
sampling. arXiv:1507.02646.

A. Vehtari, A. Gelman and J. Gabry (2017). Practical Bayesian model evaluation using leave-one-
out cross-validation and WAIC. Statistics and Computing 27, 1413-1432.

P.-C. Buerkner, J. Gabry and A. Vehtari (2021). Efficient leave-one-out cross-validation for Bayesian
non-factorized normal and Student-t models. Computational Statistics 36, 1243-1261.

Examples

ex <- mcmcsae_example(n=100)
sampler <- create_sampler(ex$model, data=ex$dat)
sim <- MCMCsim(sampler, burnin=100, n.iter=300, n.chain=4, store.all=TRUE)
compute_DIC(sim)
compute_WAIC(sim)
if (require(loo)) {

waic(sim)
loo(sim, r_eff=TRUE)

}

model_matrix Compute possibly sparse model matrix

Description

Compute possibly sparse model matrix

Usage

model_matrix(
formula,
data = NULL,
contrasts.arg = NULL,
drop.unused.levels = FALSE,
sparse = NULL,
drop0 = TRUE,
catsep = "",
by = NULL,

44 nchains-ndraws-nvars

tabM = FALSE,
enclos = .GlobalEnv

)

Arguments

formula model formula.

data data frame containing all variables used in formula. These variables should not
contain missing values. An error is raised in case any of them does.

contrasts.arg specification of contrasts for factor variables. Currently supported are "contr.none"
(no contrasts applied), "contr.treatment" (first level removed) and "contr.SAS"
(last level removed). Alternatively, a named list specifying a single level per
factor variable can be passed.

drop.unused.levels

whether empty levels of individual factor variables should be removed.

sparse if TRUE a sparse matrix of class dgCMatrix is returned. This can be efficient
for large datasets and a model containing categorical variables with many cate-
gories. If sparse=NULL, the default, whether a sparse or dense model matrix is
returned is based on a simple heuristic.

drop0 whether to drop any remaining explicit zeros in resulting sparse matrix.

catsep separator for concatenating factor variable names and level names. By default it
is the empty string, reproducing the labels of model.matrix.

by a vector by which to aggregate the result.

tabM if TRUE return a list of tabMatrix objects.

enclos enclosure to look for objects not found in data.

Value

Design matrix X, either an ordinary matrix or a sparse dgCMatrix.

nchains-ndraws-nvars Get the number of chains, samples per chain or the number of vari-
ables in a simulation object

Description

Get the number of chains, samples per chain or the number of variables in a simulation object

Usage

nchains(obj)

ndraws(obj)

nvars(dc)

par_names 45

Arguments

obj an mcdraws object or a draws component (dc) object.

dc a draws component object.

Value

The number of chains or retained samples per chain or the number of variables.

Examples

ex <- mcmcsae_example(n=50)
sampler <- create_sampler(ex$model, data=ex$dat)
sim <- MCMCsim(sampler, burnin=100, n.iter=300, thin=2, n.chain=5, store.all=TRUE)
resolve possible conflict with posterior package:
nchains <- mcmcsae::nchains; ndraws <- mcmcsae::ndraws
nchains(sim); nchains(sim$beta)
ndraws(sim); ndraws(sim$beta)
nvars(sim$beta); nvars(sim$sigma_); nvars(sim$llh_); nvars(sim$v)
plot(sim, "beta")
nchains(subset(sim$beta, chains=1:2))
ndraws(subset(sim$beta, draws=sample(1:ndraws(sim), 100)))
nvars(subset(sim$u, vars=1:2))

par_names Get the parameter names from an mcdraws object

Description

Get the parameter names from an mcdraws object

Usage

par_names(obj)

Arguments

obj an mcdraws object.

Value

The names of the parameters whose MCMC simulations are stored in obj.

46 plot.dc

Examples

data(iris)
sampler <- create_sampler(Sepal.Length ~

reg(~ Petal.Length + Species, name="beta"), data=iris)
sim <- MCMCsim(sampler, burnin=100, n.iter=400)
(summary(sim))
par_names(sim)

plot.dc Trace, density and autocorrelation plots for (parameters of a) draws
component (dc) object

Description

Trace, density and autocorrelation plots for (parameters of a) draws component (dc) object

Usage

S3 method for class 'dc'
plot(x, nrows, ncols, ask = FALSE, ...)

Arguments

x a draws component object.

nrows number of rows in plot layout.

ncols number of columns in plot layout.

ask ask before plotting the next page; default is FALSE.

... arguments passed to density.

Examples

ex <- mcmcsae_example(n=50)
sampler <- create_sampler(ex$model, data=ex$dat)
sim <- MCMCsim(sampler, store.all=TRUE)
plot(sim$u)

plot.mcdraws 47

plot.mcdraws Trace, density and autocorrelation plots

Description

Trace, density and autocorrelation plots for selected components of an mcdraws object.

Usage

S3 method for class 'mcdraws'
plot(x, vnames, nrows, ncols, ask = FALSE, ...)

Arguments

x an object of class mcdraws.

vnames optional character vector to select a subset of parameters.

nrows number of rows in plot layout.

ncols number of columns in plot layout.

ask ask before plotting the next page; default is FALSE.

... arguments passed to density.

Examples

ex <- mcmcsae_example(n=50)
sampler <- create_sampler(ex$model, data=ex$dat)
sim <- MCMCsim(sampler, store.all=TRUE)
plot(sim, c("beta", "u", "u_sigma", "v_sigma"), ask=TRUE)

plot_coef Plot a set of model coefficients or predictions with uncertainty inter-
vals based on summaries of simulation results or other objects.

Description

This function plots estimates with error bars. Multiple sets of estimates can be compared. The error
bars can either be based on standard errors or on explicitly specified lower and upper bounds. The
function is adapted from function plot.sae in package hbsae, which in turn was adapted from
function coefplot.default from package arm.

48 plot_coef

Usage

plot_coef(
...,
n.se = 1,
est.names,
sort.by = NULL,
decreasing = FALSE,
index = NULL,
maxrows = 50L,
maxcols = 6L,
offset = 0.1,
cex.var = 0.8,
mar = c(0.1, 2.1, 5.1, 0.1)

)

Arguments

... dc_summary objects (output by the summary method for simulation objects of
class dc), sae objects (output by the functions of package hbsae), or lists. In
case of a list the components used are those with name est for point estimates,
se for standard error based intervals or lower and upper for custom intervals.
Instead of dc_summary objects matrix objects are also supported as long as they
contain columns named "Mean" and "SD" as do dc_summary objects. Named
parameters of other types that do not match any other argument names are passed
to lower-level plot functions.

n.se number of standard errors below and above the point estimates to use for error
bars. By default equal to 1. This only refers to the objects of class dc_summary
and sae.

est.names labels to use in the legend for the components of the ... argument

sort.by vector by which to sort the coefficients, referring to the first object passed.

decreasing if TRUE, sort in decreasing order (default).

index vector of names or indices of the selected areas to be plotted.

maxrows maximum number of rows in a column.

maxcols maximum number of columns of estimates on a page.

offset space used between plots of multiple estimates for the same area.

cex.var the font size for the variable names, default=0.8.

mar a numerical vector of the form c(bottom, left, top, right), specifying the
number of lines of margin on each of the four sides of the plot.

Examples

create artificial data
set.seed(21)
n <- 100
dat <- data.frame(

x=runif(n),

posterior-moments 49

f=factor(sample(1:20, n, replace=TRUE))
)
model <- ~ reg(~ x, prior=pr_normal(precision=1), name="beta") + gen(factor=~f, name="v")
gd <- generate_data(model, data=dat)
dat$y <- gd$y
fit a base model
model0 <- y ~ reg(~ 1, name="beta") + gen(factor=~f, name="v")
sampler <- create_sampler(model0, data=dat, block=TRUE)
sim <- MCMCsim(sampler, store.all=TRUE)
(summ0 <- summary(sim))
fit 'true' model
model <- y ~ reg(~ x, name="beta") + gen(factor=~f, name="v")
sampler <- create_sampler(model, data=dat, block=TRUE)
sim <- MCMCsim(sampler, store.all=TRUE)
(summ <- summary(sim))
compare random effect estimates against true parameter values
plot_coef(summ0$v, summ$v, list(est=gd$pars$v), n.se=2, offset=0.2,

maxrows=10, est.names=c("base model", "true model", "true"))

posterior-moments Get means or standard deviations of parameters from the MCMC out-
put in an mcdraws object

Description

Get means or standard deviations of parameters from the MCMC output in an mcdraws object

Usage

get_means(obj, vnames = NULL)

get_sds(obj, vnames = NULL)

Arguments

obj an object of class mcdraws.

vnames optional character vector to select a subset of parameters.

Value

A list with simulation means or standard deviations.

50 predict.mcdraws

Examples

ex <- mcmcsae_example(n=50)
sampler <- create_sampler(ex$model, data=ex$dat)
sim <- MCMCsim(sampler, burnin=100, n.iter=300, thin=2, n.chain=4)
get_means(sim)
get_means(sim, "e_")
sim <- MCMCsim(sampler, burnin=100, n.iter=300, thin=2, n.chain=4,

store.mean=c("beta", "u"), store.sds=TRUE)
summary(sim, "beta")
get_means(sim, "beta")
get_sds(sim, "beta")
get_means(sim, "u")
get_sds(sim, "u")

predict.mcdraws Generate draws from the predictive distribution

Description

Generate draws from the predictive distribution

Usage

S3 method for class 'mcdraws'
predict(
object,
newdata = NULL,
X. = if (is.null(newdata)) "in-sample" else NULL,
type = c("data", "link", "response", "data_cat"),
var = NULL,
ny = NULL,
ry = NULL,
fun. = identity,
labels = NULL,
ppcheck = FALSE,
iters = NULL,
to.file = FALSE,
filename,
write.single.prec = FALSE,
show.progress = TRUE,
verbose = TRUE,
n.cores = 1L,
cl = NULL,
seed = NULL,
export = NULL,
...

)

predict.mcdraws 51

Arguments

object an object of class mcdraws, as output by MCMCsim.

newdata data frame with auxiliary information to be used for prediction.

X. a list of design matrices; alternatively, X. equals ’in-sample’ or ’linpred’. If
’in-sample’ (the default if newdata is not supplied), the design matrices for in-
sample prediction are used. If ’linpred’ the ’linpred_’ component of object is
used.

type the type of predictions. The default is "data", meaning that new data is gener-
ated according to the predictive distribution. If type="link" only the linear pre-
dictor for the mean is generated, and in case type="response" the linear predic-
tor is transformed to the response scale. For Gaussian models type="link" and
type="response" are equivalent. For binomial and negative binomial models
type="response" returns the simulations of the latent probabilities. For multi-
nomial models type="link" generates the linear predictor for all categories
except the last, and type="response" transforms this vector to the probability
scale, and type="data" generates the multinomial data, all in long vector for-
mat, where the output for all categories (except the last) are stacked. For multi-
nomial models and single trials, a further option is type="data_cat", which
generates the data as a categorical vector, with integer coded levels.

var variance(s) used for out-of-sample prediction. By default 1.

ny number of trials used for out-of-sample prediction in case of a binomial model.
By default 1.

ry fixed part of the (reciprocal) dispersion parameter in case of a negative binomial
model.

fun. function applied to the vector of posterior predictions to compute one or multiple
summaries or test statistics. The function can have one or two arguments. The
first argument is always the vector of posterior predictions. The optional second
argument represents a list of model parameters, needed only when a test statistic
depends on them. The function must return an integer or numeric vector.

labels optional names for the output object. Must be a vector of the same length as the
result of fun..

ppcheck if TRUE, function fun. is also applied to the observed data and an MCMC
approximation is computed of the posterior predictive probability that the test
statistic for predicted data is greater than the test statistic for the observed data.

iters iterations in object to use for prediction. Default NULL means that all draws
from object are used.

to.file if TRUE the predictions are streamed to file.

filename name of the file to write predictions to in case to.file=TRUE.
write.single.prec

Whether to write to file in single precision. Default is FALSE.

show.progress whether to show a progress bar.

verbose whether to show informative messages.

52 print.dc_summary

n.cores the number of cpu cores to use. Default is one, i.e. no parallel computation. If
an existing cluster cl is provided, n.cores will be set to the number of workers
in that cluster.

cl an existing cluster can be passed for parallel computation. If NULL and n.cores
> 1, a new cluster is created.

seed a random seed (integer). For parallel computation it is used to independently
seed RNG streams for all workers.

export a character vector with names of objects to export to the workers. This may be
needed for parallel execution if expressions in fun. depend on global variables.

... currently not used.

Value

An object of class dc, containing draws from the posterior (or prior) predictive distribution. If
ppcheck=TRUE posterior predictive p-values are returned as an additional attribute. In case to.file=TRUE
the file name used is returned.

Examples

n <- 250
dat <- data.frame(x=runif(n))
dat$y <- 1 + dat$x + rnorm(n)
sampler <- create_sampler(y ~ x, data=dat)
sim <- MCMCsim(sampler)
summary(sim)
in-sample prediction
pred <- predict(sim, ppcheck=TRUE)
hist(attr(pred, "ppp"))
out-of-sample prediction
pred <- predict(sim, newdata=data.frame(x=seq(0, 1, by=0.1)))
summary(pred)

print.dc_summary Display a summary of a dc object

Description

Display a summary of a dc object

Usage

S3 method for class 'dc_summary'
print(
x,
digits = 3L,

print.mcdraws_summary 53

max.lines = 1000L,
tail = FALSE,
sort = NULL,
max.label.length = NULL,
...

)

Arguments

x an object of class dc_summary.
digits number of digits to use, defaults to 3.
max.lines maximum number of lines to display. If NULL, all elements are displayed.
tail if TRUE the last instead of first at most max.lines are displayed.
sort column name on which to sort the output.
max.label.length

if specified, printed row labels will be abbreviated to at most this length.
... passed on to print.default.

Examples

ex <- mcmcsae_example()
sampler <- create_sampler(ex$model, data=ex$dat)
sim <- MCMCsim(sampler, store.all=TRUE)
print(summary(sim$u), sort="n_eff")

print.mcdraws_summary Print a summary of MCMC simulation results

Description

Display a summary of an mcdraws object, as output by MCMCsim.

Usage

S3 method for class 'mcdraws_summary'
print(x, digits = 3L, max.lines = 10L, tail = FALSE, sort = NULL, ...)

Arguments

x an object of class mcdraws_summary as output by summary.mcdraws.
digits number of digits to use, defaults to 3.
max.lines maximum number of elements per vector parameter to display. If NULL, all ele-

ments are displayed.
tail if TRUE the last instead of first max.lines of each component are displayed.
sort column name on which to sort the output.
... passed on to print.default.

54 pr_fixed

Examples

ex <- mcmcsae_example()
sampler <- create_sampler(ex$model, data=ex$dat)
sim <- MCMCsim(sampler, store.all=TRUE)
print(summary(sim), sort="n_eff")

pr_exp Create an object representing exponential prior distributions

Description

Create an object representing exponential prior distributions

Usage

pr_exp(scale = 1)

Arguments

scale scalar or vector scale parameter.

Value

An environment representing the specified prior, for internal use.

pr_fixed Create an object representing a degenerate prior fixing a parameter
(vector) to a fixed value

Description

Create an object representing a degenerate prior fixing a parameter (vector) to a fixed value

Usage

pr_fixed(value = 1)

Arguments

value scalar or vector value parameter.

Value

An environment representing the specified prior, for internal use.

pr_gamma 55

pr_gamma Create an object representing gamma prior distributions

Description

Create an object representing gamma prior distributions

Usage

pr_gamma(shape = 1, rate = 1)

Arguments

shape scalar or vector shape parameter.

rate scalar or vector rate, i.e. inverse scale, parameter.

Value

An environment representing the specified prior, for internal use.

pr_gig Create an object representing Generalized Inverse Gaussian (GIG)
prior distributions

Description

Create an object representing Generalized Inverse Gaussian (GIG) prior distributions

Usage

pr_gig(a, b, p)

Arguments

a scalar or vector parameter.

b scalar or vector parameter.

p scalar or vector parameter.

Value

An environment representing the specified prior, for internal use.

56 pr_invchisq

pr_invchisq Create an object representing inverse chi-squared priors with possibly
modeled degrees of freedom and scale parameters

Description

Create an object representing inverse chi-squared priors with possibly modeled degrees of freedom
and scale parameters

Usage

pr_invchisq(df = 1, scale = 1)

Arguments

df degrees of freedom parameter. This can be a numeric scalar or vector of length
n, the dimension of the parameter vector. Alternatively, for a scalar degrees of
freedom parameter, df="modeled" or df="modelled" assign a default (gamma)
prior to the degrees of freedom parameter. For more control of this gamma prior
a list can be passed with some of the following components:

alpha0 shape parameter of the gamma distribution

beta0 rate parameter of the gamma distribution

proposal "RW" for random walk Metropolis-Hastings or "mala" for Metropolis-
adjusted Langevin

tau (starting) scale of Metropolis-Hastings update

adapt whether to adapt the scale of the proposal distribution during burnin to
achieve better acceptance rates.

scale scalar or vector scale parameter. Alternatively, scale="modeled" or scale="modelled"
puts a default chi-squared prior on the scale parameter. For more control on this
chi-squared prior a list can be passed with some of the following components:

df degrees of freedom (scalar or vector)

scale scale (scalar or vector)

common whether the modeled scale parameter of the inverse chi-squared dis-
tribution is (a scalar parameter) common to all n parameters.

Value

An environment representing the specified prior, for internal use.

pr_invwishart 57

pr_invwishart Create an object representing an inverse Wishart prior, possibly with
modeled scale matrix

Description

Create an object representing an inverse Wishart prior, possibly with modeled scale matrix

Usage

pr_invwishart(df = NULL, scale = NULL)

Arguments

df Degrees of freedom parameter. This should be a scalar numeric value. Default
value is the dimension plus one.

scale Either a (known) scale matrix, or scale="modeled" or scale="modelled",
which puts default chi-squared priors on the diagonal elements of the inverse
Wishart scale matrix. For more control on these chi-squared priors a list can be
passed with some of the following components:

df degrees of freedom (scalar or vector) of the chi-squared distribution(s)
scale scale parameter(s) of the chi-squared distribution(s)
common whether the modeled scale parameter of the inverse chi-squared dis-

tribution is (a scalar parameter) common to all n diagonal elements.

Value

An environment representing the specified prior, for internal use.

References

A. Huang and M.P. Wand (2013). Simple marginally noninformative prior distributions for covari-
ance matrices. Bayesian Analysis 8, 439-452.

pr_MLiG Create an object representing a Multivariate Log inverse Gamma
(MLiG) prior distribution

Description

Create an object representing a Multivariate Log inverse Gamma (MLiG) prior distribution

Usage

pr_MLiG(mean = 0, precision = 0, labels = NULL, a = 1000)

58 pr_normal

Arguments

mean scalar or vector parameter for the mean in the large a limit, when the distribution
approaches a normal distribution.

precision scalar or vector parameter for the precision in the large a limit, when the distri-
bution approaches a normal distribution.

labels optional character vector with coefficient labels. If specified, it should have
the same length as at least one of mean and precision, and in that case the
MLiG prior with these parameters is assigned to these coefficients, while any
coefficients not present in labels will be assigned a non-informative prior with
mean 0 and precision 0.

a scalar parameter that controls how close the prior is to independent normal priors
with mean and precision parameters. The larger this value (default is 1000),
the closer.

Value

An environment representing the specified prior, for internal use.

References

J.R. Bradley, S.H. Holan and C.K. Wikle (2018). Computationally efficient multivariate spatio-
temporal models for high-dimensional count-valued data (with discussion). Bayesian Analysis
13(1), 253-310.

pr_normal Create an object representing a possibly multivariate normal prior
distribution

Description

Create an object representing a possibly multivariate normal prior distribution

Usage

pr_normal(mean = 0, precision = 0, labels = NULL)

Arguments

mean scalar or vector mean parameter.

precision scalar, vector or matrix precision parameter.

labels optional character vector with coefficient labels. If specified, it should have
the same length as at least one of mean and precision, and in that case the
normal prior with these parameters is assigned to these coefficients, while any
coefficients not present in labels will be assigned a non-informative prior with
mean 0 and precision 0.

read_draws 59

Value

An environment representing the specified prior, for internal use.

read_draws Read MCMC draws from a file

Description

Read draws written to file by MCMCsim used with argument to.file.

Usage

read_draws(name, filename = paste0("MCdraws_", name, ".dat"))

Arguments

name name of the parameter to load the corresponding file with posterior draws for.

filename name of the file in which the draws are stored.

Value

An object of class dc containing MCMC draws for a (vector) parameter.

Examples

Not run:
NB this example creates a file "MCdraws_e_.dat" in the working directory
n <- 100
dat <- data.frame(x=runif(n), f=as.factor(sample(1:5, n, replace=TRUE)))
gd <- generate_data(~ reg(~ x + f, prior=pr_normal(precision=1), name="beta"), data=dat)
dat$y <- gd$y
sampler <- create_sampler(y ~ reg(~ x + f, name="beta"), data=dat)
run the MCMC simulation and write draws of residuals to file:
sim <- MCMCsim(sampler, n.iter=500, to.file="e_")
summary(sim)
mcres <- read_draws("e_")
summary(mcres)

End(Not run)

60 reg

reg Create a model component object for a regression (fixed effects) com-
ponent in the linear predictor

Description

This function is intended to be used on the right hand side of the formula argument to create_sampler
or generate_data. It creates an additive regression term in the model’s linear predictor. By de-
fault, the prior for the regression coefficients is improper uniform. A proper normal prior can be set
up using function pr_normal, and passed to argument prior. It should be noted that pr_normal
expects a precision matrix as input for its second argument, and that the prior variance (matrix) is
taken to be the inverse of this precision matrix, where in case the model’s family is "gaussian"
this matrix is additionally multiplied by the residual scalar variance parameter sigma_^2.

Usage

reg(
formula = ~1,
remove.redundant = FALSE,
sparse = NULL,
X = NULL,
prior = NULL,
Q0 = NULL,
b0 = NULL,
R = NULL,
r = NULL,
S = NULL,
s = NULL,
lower = NULL,
upper = NULL,
name = "",
debug = FALSE

)

Arguments

formula a formula specifying the predictors to be used in the model, in the same way as
the right hand side of the formula argument of R’s lm function. Variable names
are looked up in the data frame passed as data argument to create_sampler or
generate_data, or in environment(formula).

remove.redundant

whether redundant columns should be removed from the design matrix. Default
is FALSE. But note that treatment contrasts are automatically applied to all factor
variables in formula.

sparse whether the model matrix associated with formula should be sparse. The de-
fault is to base this on a simple heuristic.

reg 61

X a (possibly sparse) design matrix can be specified directly, as an alternative to
the creation of one based on formula. If X is specified formula is ignored.

prior prior specification for the regression coefficients. Supported priors can be spec-
ified using functions pr_normal, pr_fixed, or pr_MLiG. The latter prior is only
available in conjunction with a gamma family sampling distribution.

Q0 prior precision matrix for the regression effects. The default is a zero matrix
corresponding to a noninformative improper prior. It can be specified as a scalar
value, as a numeric vector of appropriate length, or as a matrix object. DEP-
RECATED, please use argument prior instead, i.e. prior = pr_normal(mean
= b0.value, precision = Q0.value).

b0 prior mean for the regression effect. Defaults to a zero vector. It can be specified
as a scalar value or as a numeric vector of appropriate length. DEPRECATED,
please use argument prior instead, i.e. prior = pr_normal(mean = b0.value,
precision = Q0.value).

R optional constraint matrix for equality restrictions R’x = r where x is the vector
of regression effects.

r right hand side for the equality constraints.

S optional constraint matrix for inequality constraints S’x >= s where x is the
vector of regression effects.

s right hand side for the inequality constraints.

lower as an alternative to s, lower and upper may be specified for two-sided con-
straints lower <= S’x <= upper.

upper as an alternative to s, lower and upper may be specified for two-sided con-
straints lower <= S’x <= upper.

name the name of the model component. This name is used in the output of the MCMC
simulation function MCMCsim. By default the name will be ’reg’ with the number
of the model term attached.

debug if TRUE a breakpoint is set at the beginning of the posterior draw function asso-
ciated with this model component. Mainly intended for developers.

Value

An object with precomputed quantities and functions for sampling from prior or conditional poste-
rior distributions for this model component. Intended for internal use by other package functions.

Examples

data(iris)
default: flat priors on regression coefficients
sampler <- create_sampler(Sepal.Length ~

reg(~ Petal.Length + Species, name="beta"),
data=iris

)
sim <- MCMCsim(sampler, burnin=100, n.iter=400)
summary(sim)
(weakly) informative normal priors on regression coefficients

62 residuals-fitted-values

sampler <- create_sampler(Sepal.Length ~
reg(~ Petal.Length + Species, prior=pr_normal(precision=1e-2), name="beta"),

data=iris
)
sim <- MCMCsim(sampler, burnin=100, n.iter=400)
summary(sim)
binary regression
sampler <- create_sampler(Species == "setosa" ~

reg(~ Sepal.Length, prior=pr_normal(precision=0.1), name="beta"),
family="binomial", data=iris)

sim <- MCMCsim(sampler, burnin=100, n.iter=400)
summary(sim)
pred <- predict(sim)
str(pred)
example with equality constrained regression effects
n <- 500
df <- data.frame(x=runif(n))
df$y <- rnorm(n, 1 + 2*df$x)
R <- matrix(1, 2, 1)
r <- 3
sampler <- create_sampler(y ~ reg(~ 1 + x, R=R, r=r, name="beta"), data=df)
sim <- MCMCsim(sampler)
summary(sim)
plot(sim, "beta")
summary(transform_dc(sim$beta, fun=function(x) crossprod_mv(R, x) - r))

residuals-fitted-values

Extract draws of fitted values or residuals from an mcdraws object

Description

For a model created with create_sampler and estimated using MCMCsim, these functions return
the posterior draws of fitted values or residuals. In the current implementation the fitted values
correspond to the linear predictor and the residuals are computed as the data vector minus the fitted
values, regardless of the model’s distribution family. For large datasets the returned object can
become very large. One may therefore select a subset of draws or chains or use mean.only=TRUE
to return a vector of posterior means only.

Usage

S3 method for class 'mcdraws'
fitted(
object,
mean.only = FALSE,
units = NULL,
chains = seq_len(nchains(object)),

residuals-fitted-values 63

draws = seq_len(ndraws(object)),
matrix = FALSE,
type = c("link", "response"),
...

)

S3 method for class 'mcdraws'
residuals(
object,
mean.only = FALSE,
units = NULL,
chains = seq_len(nchains(object)),
draws = seq_len(ndraws(object)),
matrix = FALSE,
...

)

Arguments

object an object of class mcdraws.

mean.only if TRUE only the vector of posterior means is returned. In that case the subsequent
arguments are ignored. Default is FALSE.

units the data units (by default all) for which fitted values or residuals should be com-
puted.

chains optionally, a selection of chains.

draws optionally, a selection of draws per chain.

matrix whether a matrix should be returned instead of a dc object.

type the type of fitted values: "link" for fitted values on the linear predictor scale
(the default), and "response" for fitted values on the response scale. Returned
residuals are always on the response scale.

... currently not used.

Value

Either a draws component object or a matrix with draws of fitted values or residuals. The residuals
are always on the response scale, whereas fitted values can be on the scale of the linear predictor or
the response depending on type. If mean.only=TRUE, a vector of posterior means.

Examples

ex <- mcmcsae_example(n=50)
sampler <- create_sampler(ex$model, data=ex$dat)
sim <- MCMCsim(sampler, burnin=100, n.iter=300, thin=2, store.all=TRUE)
fitted(sim, mean.only=TRUE)
summary(fitted(sim))
residuals(sim, mean.only=TRUE)
summary(residuals(sim))
bayesplot::mcmc_intervals(as.matrix(subset(residuals(sim), vars=1:20)))

64 sampler_control

sampler_control Set computational options for the sampling algorithms

Description

Set computational options for the sampling algorithms

Usage

sampler_control(
add.outer.R = TRUE,
recompute.e = TRUE,
expanded.cMVN.sampler = FALSE,
CG = NULL,
block = TRUE,
block.V = TRUE,
auto.order.block = TRUE,
chol.control = chol_control(),
max.size.cps.template = 100,
PG.approx = TRUE,
PG.approx.m = -2L,
CRT.approx.m = 20L

)

Arguments

add.outer.R whether to add the outer product of a constraint matrix for a better conditioned
linear system of equations, typically for coefficients sampled in a Gibbs-block.
Default is TRUE. If NULL, a simple heuristic is used to decide whether to add the
outer product of possibly a submatrix of the constraint matrix.

recompute.e when FALSE, residuals or linear predictors are only computed at the start of the
simulation. This may give a modest speedup but in some cases may be less
accurate due to round-off error accumulation. Default is TRUE.

expanded.cMVN.sampler

whether an expanded linear system including dual variables is used for equality
constrained multivariate normal sampling. If set to TRUE this may improve the
performance of the blocked Gibbs sampler in case of a large number of equality
constraints, typically identifiability constraints for GMRFs.

CG use a conjugate gradient iterative algorithm instead of Cholesky updates for sam-
pling the model’s coefficients. This must be a list with possible components
max.it, stop.criterion, verbose, preconditioner and scale. See the help
for function CG_control, which can be used to specify these options. Conju-
gate gradient sampling is currently an experimental feature that can be used for
blocked Gibbs sampling but with some limitations.

sampler_control 65

block if TRUE, the default, all coefficients are sampled in a single block. Alternatively,
a list of character vectors with names of model components whose coefficients
should be sampled together in blocks.

block.V if TRUE, the default, all coefficients of reg and gen components in a variance
model formula are sampled in a single block. Alternatively, a list of character
vectors with names of model components whose coefficients should be sampled
together in blocks.

auto.order.block

whether Gibbs blocks should be ordered automatically in such a way that those
with the most sparse design matrices come first. This way of ordering can make
Cholesky updates more efficient.

chol.control options for Cholesky decomposition, see chol_control.

max.size.cps.template

maximum allowed size in MB of the sparse matrix serving as a template for the
sparse symmetric crossproduct X’QX of a dgCMatrix X, where Q is a diagonal
matrix subject to change.

PG.approx whether Polya-Gamma draws for logistic binomial models are approximated by
a hybrid gamma convolution approach. If not, BayesLogit::rpg is used, which
is exact for some values of the shape parameter.

PG.approx.m if PG.approx=TRUE, the number of explicit gamma draws in the sum-of-gammas
representation of the Polya-Gamma distribution. The remainder (infinite) con-
volution is approximated by a single moment-matching gamma draw. Special
values are: -2L for a default choice depending on the value of the shape param-
eter balancing performance and accuracy, -1L for a moment-matching normal
approximation, and 0L for a moment-matching gamma approximation.

CRT.approx.m scalar integer specifying the degree of approximation to sampling from a Chi-
nese Restaurant Table distribution. The approximation is based on Le Cam’s
theorem. Larger values yield a slower but more accurate sampler.

Value

A list with specified computational options used by various sampling functions.

References

D. Bates, M. Maechler, B. Bolker and S.C. Walker (2015). Fitting Linear Mixed-Effects Models
Using lme4. Journal of Statistical Software 67(1), 1-48.

Y. Chen, T.A. Davis, W.W. Hager and S. Rajamanickam (2008). Algorithm 887: CHOLMOD, su-
pernodal sparse Cholesky factorization and update/downdate. ACM Transactions on Mathematical
Software 35(3), 1-14.

66 SBC_test

SBC_test Simulation based calibration

Description

Simulation based calibration

Usage

SBC_test(
...,
pars,
n.draws = 25L,
n.sim = 20L * n.draws,
burnin = 25L,
thin = 2L,
show.progress = TRUE,
verbose = TRUE,
n.cores = 1L,
cl = NULL,
seed = NULL,
export = NULL

)

Arguments

... passed to create_sampler (can be all parameters except prior.only)
pars named list with univariate functions of the parameters to use in test. This list is

passed to argument pred of MCMCsim.
n.draws number of posterior draws to retain in posterior simulations.
n.sim number of simulation iterations.
burnin burnin to use in posterior simulations, passed to MCMCsim.
thin thinning to use in posterior simulations, passed to MCMCsim.
show.progress whether a progress bar should be shown.
verbose set to FALSE to suppress messages.
n.cores the number of cpu cores to use. Default is one, i.e. no parallel computation. If

an existing cluster cl is provided, n.cores will be set to the number of workers
in that cluster.

cl an existing cluster can be passed for parallel computation. If NULL and n.cores
> 1, a new cluster is created.

seed a random seed (integer). For parallel computation it is used to independently
seed RNG streams for all workers.

export a character vector with names of objects to export to the workers. This may be
needed for parallel execution if expressions in the model formulae depend on
global variables.

setup_cluster 67

Value

A matrix with ranks.

References

M. Modrak, A.H. Moon, S. Kim, P. Buerkner, N. Huurre, K. Faltejskova, A. Gelman and A. Ve-
htari (2023). Simulation-based calibration checking for Bayesian computation: The choice of test
quantities shapes sensitivity. Bayesian Analysis, 1(1), 1-28.

Examples

Not run:
this example may take a long time
n <- 10L
dat <- data.frame(x=runif(n))
ranks <- SBC_test(~ reg(~ 1 + x, prior=pr_normal(mean=c(0.25, 1), precision=1), name="beta"),

sigma.mod=pr_invchisq(df=1, scale=list(df=1, scale=1)), data=dat,
pars=list(mu="beta[1]", beta_x="beta[2]", sigma="sigma_"),
n.draws=9L, n.sim=10L*20L, thin=2L, burnin=20L

)
ranks

End(Not run)

setup_cluster Set up a cluster for parallel computing

Description

The cluster is set up for a number of workers by loading the mcmcsae package and setting up
independent RNG streams.

Usage

setup_cluster(n.cores = NULL, seed = NULL, export = NULL)

Arguments

n.cores the number of cpu cores to use.

seed optional random seed for reproducibility.

export a character vector with names of objects to export to the workers.

Value

An object representing the cluster.

68 subset.dc

stop_cluster Stop a cluster

Description

Stop a cluster set up by setup_cluster.

Usage

stop_cluster(cl)

Arguments

cl the cluster object.

Value

NULL.

subset.dc Select a subset of chains, samples and parameters from a draws com-
ponent (dc) object

Description

Select a subset of chains, samples and parameters from a draws component (dc) object

Usage

S3 method for class 'dc'
subset(
x,
chains = seq_len(nchains(x)),
draws = seq_len(ndraws(x)),
vars = seq_len(nvars(x)),
...

)

Arguments

x a draws component (dc) object.

chains an integer vector indicating which chains to select.

draws an integer vector indicating which samples to select.

vars an integer vector indicating which parameters to select.

... not used.

summary.dc 69

Value

The selected part of the draws component as an object of class dc.

Examples

n <- 300
dat <- data.frame(x=runif(n), f=as.factor(sample(1:7, n, replace=TRUE)))
gd <- generate_data(~ reg(~ x + f, prior=pr_normal(precision=1), name="beta"), data=dat)
dat$y <- gd$y
sampler <- create_sampler(y ~ reg(~ x + f, name="beta"), data=dat)
sim <- MCMCsim(sampler)
(summary(sim$beta))
(summary(subset(sim$beta, chains=1)))
(summary(subset(sim$beta, chains=1, draws=sample(1:ndraws(sim), 100))))
(summary(subset(sim$beta, vars=1:2)))

summary.dc Summarize a draws component (dc) object

Description

Summarize a draws component (dc) object

Usage

S3 method for class 'dc'
summary(
object,
probs = c(0.05, 0.5, 0.95),
na.rm = FALSE,
time = NULL,
abbr = FALSE,
batch.size = 100L,
...

)

Arguments

object an object of class dc.

probs vector of probabilities at which to evaluate quantiles.

na.rm whether to remove NA/NaN draws in computing the summaries.

time MCMC computation time; if specified the effective sample size per unit of time
is returned in an extra column labeled ’efficiency’.

abbr if TRUE abbreviate the labels in the output.

70 summary.mcdraws

batch.size number of parameter columns to process simultaneously. A larger batch size
may speed things up a little, but if an out of memory error occurs it may be a
good idea to use a smaller number and try again. The default is 100.

... arguments passed to n_eff.

Value

A matrix with summaries of class dc_summary.

Examples

ex <- mcmcsae_example()
sampler <- create_sampler(ex$model, data=ex$dat)
sim <- MCMCsim(sampler, store.all=TRUE)
summary(sim$u)

summary.mcdraws Summarize an mcdraws object

Description

Summarize an mcdraws object

Usage

S3 method for class 'mcdraws'
summary(
object,
vnames = NULL,
probs = c(0.05, 0.5, 0.95),
na.rm = FALSE,
efficiency = FALSE,
abbr = FALSE,
batch.size = 100L,
...

)

Arguments

object an object of class mcdraws, typically generated by function MCMCsim.

vnames optional character vector to select a subset of parameters.

probs vector of probabilities at which to evaluate quantiles.

na.rm whether to remove NA/NaN draws in computing the summaries.

efficiency if TRUE the effective sample size per second of computation time is returned as
well.

TMVN-methods 71

abbr if TRUE abbreviate the labels in the output.

batch.size number of parameter columns to process simultaneously for vector parameters.
A larger batch size may speed things up a little, but if an out of memory error
occurs it may be a good idea to use a smaller number and try again. The default
is 100.

... arguments passed to n_eff.

Value

A list of class mcdraws_summary summarizing object.

Examples

ex <- mcmcsae_example()
sampler <- create_sampler(ex$model, data=ex$dat)
sim <- MCMCsim(sampler, store.all=TRUE)
summary(sim)
par_names(sim)
summary(sim, c("beta", "v_sigma", "u_sigma"))

TMVN-methods Functions for specifying the method and corresponding options for
sampling from a possibly truncated and degenerate multivariate nor-
mal distribution

Description

These functions are intended for use in the method argument of create_TMVN_sampler.

Usage

m_direct()

m_Gibbs(slice = FALSE, diagnostic = FALSE, debug = FALSE)

m_HMC(
Tsim = pi/2,
max.events = .Machine$integer.max,
diagnostic = FALSE,
debug = FALSE

)

m_HMCZigZag(
Tsim = 1,
rate = 1,
prec.eq = NULL,

72 TMVN-methods

diagnostic = FALSE,
max.events = .Machine$integer.max,
adapt = FALSE,
debug = FALSE

)

m_softTMVN(
sharpness = 100,
useV = FALSE,
CG = NULL,
PG.approx = TRUE,
PG.approx.m = -2L,
debug = FALSE

)

Arguments

slice if TRUE, a Gibbs within slice sampler is used.

diagnostic whether information about violations of inequalities, bounces off inequality walls
(for ’HMC’ and ’HMCZigZag’ methods) or gradient events (for ’HMCZigZag’)
is printed to the screen.

debug if TRUE a breakpoint is set at the beginning of the TMVN sampling function.
Mainly intended for developers.

Tsim the duration of a Hamiltonian Monte Carlo simulated particle trajectory. This
can be specified as either a single positive numeric value for a fixed simulation
time, or as a function that is applied in each MCMC iteration to generates a
simulation time.

max.events maximum number of events (reflections off inequality walls and for method
’HMCZigZag’ also gradient events). Default is unlimited. Specifying a finite
number may speed up the sampling but may also result in a biased sampling
algorithm.

rate vector of Laplace rate parameters for method ’HMCZigZag’. It must be a posi-
tive numeric vector of length one or the number of variables.

prec.eq positive numeric vector of length 1 or the number of equality restrictions, to
control the precision with which the equality restrictions are imposed; the larger
prec.eq the more precisely they will be imposed.

adapt experimental feature: if TRUE the rate parameter will be adapted in an attempt to
make the sampling algorithm more efficient.

sharpness for method ’softTMVN’, the sharpness of the soft inequalities; the larger the
better the approximation of exact inequalities. It must a positive numeric vector
of length one or the number of inequality restrictions.

useV for method ’softTMVN’ whether to base computations on variance instead of
precision matrices.

CG use a conjugate gradient iterative algorithm instead of Cholesky updates for sam-
pling the model’s coefficients. This must be a list with possible components
max.it, stop.criterion, verbose. See the help for function CG_control,

transform_dc 73

which can be used to specify these options. Currently the preconditioner and
scale options cannot be set for this use case.

PG.approx see sampler_control.

PG.approx.m see sampler_control.

Value

A method object, for internal use only.

transform_dc Transform one or more draws component objects into a new one by
applying a function

Description

Transform one or more draws component objects into a new one by applying a function

Usage

transform_dc(..., fun, to.matrix = FALSE, labels = NULL)

Arguments

... draws component object(s) of class dc.

fun a function to apply. This function should take as many arguments as there are
input objects. The arguments can be arbitrarily named, but they are assumed to
be in the same order as the input objects. The function should return a vector.

to.matrix if TRUE the output is in matrix format; otherwise it is a draws component object.

labels optional labels for the output object.

Value

Either a matrix or a draws component object.

Examples

ex <- mcmcsae_example(n=50)
sampler <- create_sampler(ex$model, data=ex$dat)
sim <- MCMCsim(sampler, burnin=100, n.iter=300, thin=2, n.chain=4, store.all=TRUE)
summary(sim$v_sigma)
summary(transform_dc(sim$v_sigma, fun=function(x) x^2))
summary(transform_dc(simu, simu_sigma, fun=function(x1, x2) abs(x1)/x2))

74 vfac

vfac Create a model component object for a variance factor component in
the variance function of a gaussian sampling distribution

Description

This function is intended to be used on the right hand side of the formula.V argument to create_sampler
or generate_data.

Usage

vfac(
factor = "local_",
prior = pr_invchisq(df = 1, scale = 1),
name = "",
debug = FALSE

)

Arguments

factor The name of a factor variable. The name "local_" has a special meaning,
and assigns a different variance scale parameter to each data unit. In case of
inverse chi-squared priors this implies that the marginal sampling distribution is
a t distribution. In case of exponential priors the marginal sampling distribution
is a Laplace or double exponential distribution.

prior the prior assigned to the variance factors. Currently the prior can be inverse
chi-squared or exponential, specified by a call to pr_invchisq or pr_exp, re-
spectively. The default priors are inverse chi-squared with 1 degree of freedom.
See the help pages of the prior specification functions for details on how to set
non-default priors.

name The name of the variance model component. This name is used in the output
of the MCMC simulation function MCMCsim. By default the name will be ’vfac’
with the number of the variance model term attached.

debug If TRUE a breakpoint is set at the beginning of the posterior draw function asso-
ciated with this model component. Mainly intended for developers.

Value

An object with precomputed quantities and functions for sampling from prior or conditional poste-
rior distributions for this model component. Intended for internal use by other package functions.

vreg 75

vreg Create a model component object for a regression component in the
variance function of a gaussian sampling distribution

Description

This function is intended to be used on the right hand side of the formula.V argument to create_sampler
or generate_data.

Usage

vreg(
formula = NULL,
remove.redundant = FALSE,
sparse = NULL,
X = NULL,
prior = NULL,
Q0 = NULL,
b0 = NULL,
name = ""

)

Arguments

formula a formula for the regression effects explaining the log-variance. Variable names
are looked up in the data frame passed as data argument to create_sampler or
generate_data, or in environment(formula).

remove.redundant

whether redundant columns should be removed from the design matrix. Default
is FALSE.

sparse whether the model matrix associated with formula should be sparse. The de-
fault is determined by a simple heuristic based on storage size.

X a (possibly sparse) design matrix can be specified directly, as an alternative to
the creation of one based on formula. If X is specified formula is ignored.

prior prior specification for the coefficients. Currently only normal priors are sup-
ported, specified using function pr_normal.

Q0 prior precision matrix for the regression effects. The default is a zero matrix cor-
responding to a noninformative improper prior. DEPRECATED, please use ar-
gument prior instead, i.e. prior = pr_normal(mean = b0.value, precision
= Q0.value).

b0 prior mean for the regression effect. Defaults to a zero vector. DEPRECATED,
please use argument prior instead, i.e. prior = pr_normal(mean = b0.value,
precision = Q0.value).

name the name of the model component. This name is used in the output of the MCMC
simulation function MCMCsim. By default the name will be ’vreg’ with the num-
ber of the variance model term attached.

76 weights.mcdraws

Value

An object with precomputed quantities and functions for sampling from prior or conditional poste-
rior distributions for this model component. Intended for internal use by other package functions.

References

E. Cepeda and D. Gamerman (2000). Bayesian modeling of variance heterogeneity in normal re-
gression models. Brazilian Journal of Probability and Statistics, 207-221.

T.I. Lin and W.L. Wang (2011). Bayesian inference in joint modelling of location and scale param-
eters of the t distribution for longitudinal data. Journal of Statistical Planning and Inference 141(4),
1543-1553.

weights.mcdraws Extract weights from an mcdraws object

Description

Extract weights from an mcdraws object

Usage

S3 method for class 'mcdraws'
weights(object, ...)

Arguments

object an object of class mcdraws.

... currently not used.

Value

A vector with (simulation means of) weights.

Examples

first create a population data frame
N <- 1000 # population size
pop <- data.frame(x=rnorm(N), area=factor(sample(1:10, N, replace=TRUE)))
pop$y <- 1 + 2*pop$x + seq(-1, to=1, length.out=10)[pop$area] + 0.5*rnorm(N)
pop$sample <- FALSE
pop$sample[sample(seq_len(N), 100)] <- TRUE
a simple linear regression model:
sampler <- create_sampler(

y ~ reg(~ x, name="beta"),
linpred=list(beta=rowsum(model.matrix(~ x, pop), pop$area)), compute.weights=TRUE,
data=pop[pop$sample,]

)
sim <- MCMCsim(sampler)

weights.mcdraws 77

(summary(sim))
str(weights(sim))
crossprod_mv(weights(sim), pop$y[pop$sample])
summary(sim$linpred_)
a multilevel model:
sampler <- create_sampler(

y ~ reg(~ x, name="beta") + gen(factor = ~ area, name="v"),
linpred=list(beta=rowsum(model.matrix(~ x, pop), pop$area), v=diag(10)), compute.weights=TRUE,
data=pop[pop$sample,]

)
sim <- MCMCsim(sampler)
(summary(sim))
str(weights(sim))
crossprod_mv(weights(sim), pop$y[pop$sample])
summary(sim$linpred_)

Index

%m*v% (matrix-vector), 29

acceptance_rates, 4
aggrMatrix, 4
AR1 (correlation), 11
as.array.dc (MCMC-object-conversion), 32
as.matrix.dc (MCMC-object-conversion),

32

brt, 5, 16

CG_control, 7, 64, 72
chol_control, 7, 8, 19, 65
Cholesky, 8
combine_chains, 8
combine_iters, 9
compute_DIC

(model-information-criteria),
41

compute_GMRF_matrices, 10, 22
compute_WAIC

(model-information-criteria),
41

computeDesignMatrix, 9
correlation, 11, 21
create_sampler, 5, 6, 14, 20–22, 25, 27, 30,

34–37, 39, 40, 60, 62, 66, 74, 75
create_TMVN_sampler, 17, 71
crossprod_mv (matrix-vector), 29
custom (correlation), 11

dbarts, 6
density, 46, 47
draws_array, 32

f_binomial (mcmcsae-family), 33
f_gamma (mcmcsae-family), 33
f_gaussian (mcmcsae-family), 33
f_gaussian_gamma (mcmcsae-family), 33
f_multinomial (mcmcsae-family), 33
f_negbinomial (mcmcsae-family), 33

f_poisson (mcmcsae-family), 33
fitted.mcdraws

(residuals-fitted-values), 62

gen, 10, 11, 14, 16, 20, 27
gen_control, 24, 26
generate_data, 5, 6, 16, 20–22, 24, 27, 39,

40, 60, 74, 75
get_draw, 26
get_means (posterior-moments), 49
get_sds (posterior-moments), 49
glreg, 23, 27

iid (correlation), 11

labels, 28
labels<- (labels), 28
loo, 42
loo.mcdraws

(model-information-criteria),
41

m_direct (TMVN-methods), 71
m_Gibbs (TMVN-methods), 71
m_HMC (TMVN-methods), 71
m_HMCZigZag (TMVN-methods), 71
m_softTMVN (TMVN-methods), 71
matrix-vector, 29
maximize_log_lh_p, 29
MCMC-diagnostics, 31
MCMC-object-conversion, 32
mcmc.list, 32
mcmcsae (mcmcsae-package), 3
mcmcsae-family, 15, 33
mcmcsae-package, 3
mcmcsae_example, 35
MCMCsim, 4, 6, 14, 16, 23, 28, 36, 40, 41, 51,

53, 59, 61, 62, 66, 70, 74, 75
mec, 14, 16, 39
model-information-criteria, 41

78

INDEX 79

model_matrix, 43

n_eff, 70, 71
n_eff (MCMC-diagnostics), 31
nchains (nchains-ndraws-nvars), 44
nchains-ndraws-nvars, 44
ndraws (nchains-ndraws-nvars), 44
nvars (nchains-ndraws-nvars), 44

offset, 16
optim, 30

par_names, 45
plot.dc, 46
plot.mcdraws, 47
plot_coef, 47
poly2nb, 12
posterior-moments, 49
pr_exp, 15, 22, 34, 54, 74
pr_fixed, 15, 34, 54, 61
pr_gamma, 34, 55
pr_gig, 15, 55
pr_invchisq, 15, 22, 56, 74
pr_invwishart, 22, 57
pr_MLiG, 22, 23, 57, 61
pr_normal, 22, 27, 39, 40, 58, 60, 61, 75
predict.mcdraws, 50
print.dc_summary, 52
print.mcdraws_summary, 53

R_hat (MCMC-diagnostics), 31
read_draws, 59
reg, 14, 16, 60
residuals-fitted-values, 62
residuals.mcdraws

(residuals-fitted-values), 62
RW1 (correlation), 11
RW2 (correlation), 11

sampler_control, 16, 64, 73
SBC_test, 66
season (correlation), 11
setup_cluster, 67, 68
spatial (correlation), 11
spline (correlation), 11
splineDesign, 12
st_read, 12
stop_cluster, 68
subset.dc, 68

summary.dc, 69
summary.mcdraws, 53, 70

TMVN-methods, 71
to_draws_array

(MCMC-object-conversion), 32
to_mcmc (MCMC-object-conversion), 32
transform_dc, 73

vfac, 16, 74
vreg, 16, 75

waic, 42
waic.mcdraws

(model-information-criteria),
41

weights.mcdraws, 76

	mcmcsae-package
	acceptance_rates
	aggrMatrix
	brt
	CG_control
	chol_control
	combine_chains
	combine_iters
	computeDesignMatrix
	compute_GMRF_matrices
	correlation
	create_sampler
	create_TMVN_sampler
	gen
	generate_data
	gen_control
	get_draw
	glreg
	labels
	matrix-vector
	maximize_log_lh_p
	MCMC-diagnostics
	MCMC-object-conversion
	mcmcsae-family
	mcmcsae_example
	MCMCsim
	mec
	model-information-criteria
	model_matrix
	nchains-ndraws-nvars
	par_names
	plot.dc
	plot.mcdraws
	plot_coef
	posterior-moments
	predict.mcdraws
	print.dc_summary
	print.mcdraws_summary
	pr_exp
	pr_fixed
	pr_gamma
	pr_gig
	pr_invchisq
	pr_invwishart
	pr_MLiG
	pr_normal
	read_draws
	reg
	residuals-fitted-values
	sampler_control
	SBC_test
	setup_cluster
	stop_cluster
	subset.dc
	summary.dc
	summary.mcdraws
	TMVN-methods
	transform_dc
	vfac
	vreg
	weights.mcdraws
	Index

